已知.
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若 求函數(shù)的單調(diào)區(qū)間;
(3)若不等式恒成立,求實(shí)數(shù)的取值范圍.
見解析
【解析】(1) ∵ ∴∴ ∴ , 又,所以切點(diǎn)坐標(biāo)為
∴ 所求切線方程為,即.
(2)
由 得 或
(1)當(dāng)時(shí),由, 得.
由, 得或
此時(shí)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.
(2)當(dāng)時(shí),由,得.
由,得或
此時(shí)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.
綜上:
當(dāng)時(shí),的單調(diào)遞減區(qū)間為,
單調(diào)遞增區(qū)間為和
當(dāng)時(shí),的單調(diào)遞減區(qū)間為
單調(diào)遞增區(qū)間為和.
(3)依題意,不等式恒成立, 等價(jià)于
在上恒成立
可得在上恒成立 設(shè), 則 令,得(舍)當(dāng)時(shí),;當(dāng)時(shí),
當(dāng)變化時(shí),變化情況如下表:
+ | - | ||
單調(diào)遞增 | -2 | 單調(diào)遞減 |
∴ 當(dāng)時(shí),取得最大值, =-2
∴ 的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科余弦定理(解析版) 題型:選擇題
已知A,B,C為△ABC的三個(gè)內(nèi)角,其所對(duì)的邊分別為a,b,c,若A=,a=2,b+c=4,則△ABC的面積為( )
A.2
B.
C.3
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科三角函數(shù)圖象變換(解析版) 題型:選擇題
函數(shù)f(x)=2sin(x+)(>0, -<<)的部分圖象如圖所示,則的值分別是( )
A.2,-B.2, C.4, -D.4,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科頻率分布直方圖、莖葉圖(解析版) 題型:選擇題
某校開展“愛我海西、愛我家鄉(xiāng)”攝影比賽,9位評(píng)委為參賽作品A給出的分?jǐn)?shù)如下圖所示.記分員在去掉一個(gè)最高分和一個(gè)最低分后,算得平均分為91.復(fù)核員在復(fù)核時(shí),發(fā)現(xiàn)有一個(gè)數(shù)字(莖葉圖中的x)無法看清.若記分員計(jì)算無誤,則數(shù)字x應(yīng)該是( ).
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測題(解析版) 題型:解答題
設(shè)函數(shù)。
(1)若,求的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測題(解析版) 題型:解答題
如圖,四棱錐中,底面為平行四邊形,,,,是正三角形,平面平面.
(1)求證:;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測題(解析版) 題型:解答題
如圖,,為圓柱的母線,是底面圓的直徑,,分別是,的中點(diǎn),.
(1)證明:;
(2)證明:;
(3)假設(shè)這是個(gè)大容器,有條體積可以忽略不計(jì)的小魚能在容器的任意地方游弋,如果魚游到四棱錐 內(nèi)會(huì)有被捕的危險(xiǎn),求魚被捕的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科選擇題專項(xiàng)訓(xùn)練(解析版) 題型:選擇題
已知m,n是兩條不同直線,是兩個(gè)不同平面,以下命題正確的是( )
A.若則
B.若則
C.若則
D.若則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科解答題后三題(解析版) 題型:解答題
已知曲線滿足下列條件:
①過原點(diǎn);②在處導(dǎo)數(shù)為-1;③在處切線方程為.
(1) 求實(shí)數(shù)的值;
(2)求函數(shù)的極值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com