x∈[-1,1)時,求f(x)=a•2x+2+3•4x(a>-3)的最小值.
考點:指數(shù)型復合函數(shù)的性質(zhì)及應用
專題:計算題,函數(shù)的性質(zhì)及應用
分析:化簡f(x)=a•2x+2+3•4x=3(2x2+4a2x;則由x∈[-1,1)可知2x∈[
1
2
,2);從而討論a的取值范圍以求最小值.
解答: 解:f(x)=a•2x+2+3•4x=3(2x2+4a2x;
∵x∈[-1,1),∴2x∈[
1
2
,2);
①當
1
2
<-
4a
2×3
<2,即-3<a<-
3
4
時,
fmin(x)=3(-
4a
2×3
2+4a(-
4a
2×3
)=-
4
3
a2;
②當-
4a
2×3
1
2
,即a≥-
3
4
時,
fmin(x)=3(
1
2
2+4a
1
2
=2a+
3
4
點評:本題考查了函數(shù)的最小值的求法,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-(a+3)x+(2a+2)lnx.
(1)函數(shù)f(x)在點(1,f(1))處的切線與2x-y+1=0平行,求a的值;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)若不等式4n2ln(
n+1
n
)≤2mn2+1對一切正整數(shù)n恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=
x
在x=1處可導,求y′.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:2x+y+1=0是三角形的一條內(nèi)角平分線,且(1,2)和(-1,-1)是三角形的兩個頂點,求三角形的第三個頂點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2lnx-
1
2
ax2-3x,其中a為常數(shù).若當x=1時,f(x)取得極值,求a的值,并求出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為(0,+∞),并且滿足下列條件:
①f(2)=1; ②f(x,y)=f(x)+f(y); ③當x>1時,f(x)>0.
(Ⅰ)求f(1),f(
1
4
)的值;
(Ⅱ) 證明f(x)在(0,+∞)是增函數(shù);
(Ⅲ)解不等式f(2)+f(4-8x)>3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x×|x-1|-3x+1的遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,短軸一個端點到右焦點的距離為
3

(1)求橢圓C的方程;
(2)設直線y=x+1與橢圓C交于A,B兩點,求A,B兩點間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是R上的奇函數(shù),且當x>0時,f(x)=lg(x2-ax+10),a∈R.
(1)若f(1)=1,求f(x)的解析式;
(2)若a=0,不等式f(k•2x)+f(4x+k+1)>0恒成立,求實數(shù)k的取值范圍;
(3)若f(x)的值域為R,求a的取值范圍.

查看答案和解析>>

同步練習冊答案