設f(x)=x2-bx+c,不等式f(x)<0的解集是(-1,3),若f(7+|t|)>f(1+t2),求實數(shù)t的取值范圍.
【答案】分析:①由f(x)<0的解集(-1,3)判斷a的符號,由圖象性質得出f(x)=0單調遞增區(qū)間②判斷7+|t|≥7,1+t2是否同在一個單調區(qū)間內③利用y=f(x)單調性脫去函數(shù)符號,解得t范圍.
解答:解:∵f(x)<0的解集是(-1,3),∴a>0
f(x)的對稱軸是x=1,得ab=2.
∴f(x)在[1,+∞)上單調遞增.
又∵7+|t|≥7,1+t2≥1,
∴由f(7+|t|)>f(1+t2),得7+|t|>1+t2
∴|t|2-|t|-6<0,解得-3<t<3.
點評:本題考查一元二次函數(shù)圖象性質以及函數(shù)單調性應用
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

8、設f(x)和g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若對任意的x∈[a,b],都有|f(x)-g(x)|≤1,則稱f(x)和g(x)在[a,b]上是“密切函數(shù)”,[a,b]稱為“密切區(qū)間”,設f(x)=x2-3x+4與g(x)=2x-3在[a,b]上是“密切函數(shù)”,則它的“密切區(qū)間”可以是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=x2+ax+b,求證:||f(1)|,|f(2)||f(3)|中至少有一個不小于
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)二模)已知函數(shù)f(x)=
1,x>0
0,x=0
-1,x<0
,設F(x)=x2•f(x),則F(x)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=|x2-
1
2
|,若0<a<b,且f(a)=f(b),則ab的取值范圍是( 。
A、(0,
1
2
B、(0,
1
2
]
C、(0,2)
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=x2-bx+c對一切x∈R恒有f(1+x)=f(1-x)成立,f(0)=3,則當x<0時f(bx)與f(cx)的大小關系是( 。

查看答案和解析>>

同步練習冊答案