11.向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,1),當($\overrightarrow{a}$+2$\overrightarrow$)⊥(2$\overrightarrow{a}$-$\overrightarrow$)時,則x的值為-2或$\frac{7}{2}$.

分析 利用已知條件求出向量$\overrightarrow{a}$+2$\overrightarrow$,2$\overrightarrow{a}$-$\overrightarrow$,利用($\overrightarrow{a}$+2$\overrightarrow$)⊥(2$\overrightarrow{a}$-$\overrightarrow$)列出方程,求解即可.

解答 解:向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,1),
$\overrightarrow{a}$+2$\overrightarrow$=(1+2x,4).
2$\overrightarrow{a}$-$\overrightarrow$=(2-x,3),
∵($\overrightarrow{a}$+2$\overrightarrow$)⊥(2$\overrightarrow{a}$-$\overrightarrow$)
∴(1+2x)(2-x)+12=0,
即:2-x+4x-2x2+12=0,
2x2-3x-14=0,解得x=-2,x=$\frac{7}{2}$.
故答案為:-2或$\frac{7}{2}$.

點評 本題考查向量的數(shù)量積的應用,向量的垂直條件的應用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.若m=$\sqrt{a}$-$\sqrt{a-1}$,n=$\sqrt{a-2}$-$\sqrt{a-3}$ (a≥3),則( 。
A.m>nB.m=n
C.m<nD.m與的n大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在矩形ABCD中,AB=4$\sqrt{5}$,AD=2$\sqrt{5}$,將△ABD沿BD折起,使得點A折起至A′,設二面角A′-BD-C的大小為θ.
(1)當θ=90°時,求A′C的長;
(2)當cosθ=$\frac{1}{4}$時,求BC與平面A′BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設函數(shù)f(x)=axlnx(a≠0),若f′(e)=2,則f(e)的值為( 。
A.$\frac{e}{2}$B.1C.eD.2e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知f(x)是定義在R上的奇函數(shù),對任意x∈R都有f(x+4)=f(x)+3f(2),且f(1)=1,則f(2015)+f(2016)的值為( 。
A.-1B.0C.1D.2016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.cos$\frac{9π}{4}$+tan(-$\frac{7π}{6}$)+sin21π的值為$\frac{{\sqrt{2}}}{2}-\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)f(x)=2sin2x-6sinx+2(x∈R)的最大值和最小值之和是(  )
A.8B.$\frac{15}{2}$C.-2D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知等差數(shù)列{an}中,a2=6,a5=15,若bn=a2n,則數(shù)列{bn}的前5項和等于( 。
A.90B.45C.30D.186

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設等差數(shù)列{an}的前n項和為Sn,已知a1=-11,Sn有唯一的最小值S6,且Sn≥0的解集為{n∈N*|n≥12},則數(shù)列{an}的公差d的取值范圍是( 。
A.[2,$\frac{11}{5}$)B.(2,$\frac{11}{5}$]C.[2,$\frac{11}{5}$]D.(2,$\frac{11}{5}$)

查看答案和解析>>

同步練習冊答案