分析 根據(jù)極限的知識(shí)可知$\underset{lim}{x→0}\frac{sinx}{x}=1$,從而根據(jù)條件判斷出0<x<1時(shí),0<f(x)<1,從而得出f2(x)<f(x),而可判斷x2<x,這樣根據(jù)f(x)的單調(diào)性即可比較b,c大小,最后即可得出a,b,c的大小關(guān)系.
解答 解:x趨向0時(shí),$\frac{sinx}{x}$趨向1;
又f(x)在(0,1)上是減函數(shù);
∴0<x<1時(shí),sin1<f(x)<1;
∴f2(x)<f(x);
即a<b;
0<x<1,∴x2<x;
∴f(x2)>f(x);
即c>b;
∴a<b<c.
故答案為:a<b<c.
點(diǎn)評(píng) 考查對(duì)$\underset{lim}{x→0}\frac{sinx}{x}=1$極限的掌握,減函數(shù)的定義,以及根據(jù)減函數(shù)定義比較大小的方法,0<x<1時(shí),可比較x2和x的大小關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{2}$π | B. | 5π | C. | 4π | D. | $\frac{5}{3}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=±\sqrt{3}x$ | B. | $y=±\frac{{\sqrt{3}}}{3}x$ | C. | y=±4x | D. | y=±$\frac{1}{4}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 長(zhǎng)度相等的兩向量必相等 | B. | 兩向量相等,其長(zhǎng)度不一定相等 | ||
C. | 向量的大小與有向線段的起點(diǎn)無(wú)關(guān) | D. | 向量的大小與有向線段的起點(diǎn)有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | 0 | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com