(本小題滿分12分)
如圖,在多面體中,平面∥平面, ⊥平面,,,∥.
且 , .
(Ⅰ)求證:平面;
(Ⅱ)求證:∥平面;
(Ⅲ)求二面角的余弦值.
(Ⅰ)平面∥平面,∥,又四邊形為平行四邊形,∥ ,面平面
(Ⅱ)設(shè)的中點(diǎn)為,連接,則,∥,∴四邊形是平行四邊形,∴∥,由(Ⅰ)知,為平行四邊形,∴∥,∴∥,∴∥,又平面,故 ∥平面;
(Ⅲ)-.
解析試題分析:(Ⅰ)平面∥平面,平面平面,平面平面,∥ ………1分
又四邊形為平行四邊形,∥ ……2分
面平面……3分
(Ⅱ)設(shè)的中點(diǎn)為,連接,則,
∥,∴四邊形是平行四邊形…………4分
∴∥,由(Ⅰ)知,為平行四邊形,∴∥,∴∥,
∴四邊形是平行四邊形,…………5分
即∥,又平面,故 ∥平面;…………6分
(Ⅲ)由已知,兩兩垂直,建立如圖的空間坐標(biāo)系,則
∴
設(shè)平面的法向量為,則,
令,則,而平面的法向量
∴=
由圖形可知,二面角的余弦值-.……………………12分
考點(diǎn):本題考查了空間中的線面角的求法
點(diǎn)評(píng):高考中?疾榭臻g中平行關(guān)系與垂直關(guān)系的證明以及幾何體體積的計(jì)算,這是高考的重點(diǎn)內(nèi)容.證明的關(guān)鍵是熟練掌握并靈活運(yùn)用相關(guān)的判定定理與性質(zhì)定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。
求證:(1)PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐P -ABC中,點(diǎn)P在平面ABC上的射影D是AC的中點(diǎn).BC ="2AC=8,AB" =
(I )證明:平面PBC丄平面PAC
(II)若PD =,求二面角A-PB-C的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)
如圖,在中,為邊上的高,,沿將翻折,使得得幾何體
(Ⅰ)求證:;
(Ⅱ)求點(diǎn)D到面ABC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,在三棱錐中,,,,,, 點(diǎn),分別在棱上,且,
(Ⅰ)求證:平面PAC
(Ⅱ)當(dāng)為的中點(diǎn)時(shí),求與平面所成的角的正弦值;
(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
如圖,在底面是直角梯形的四棱錐S-ABCD中,
(1)求四棱錐S-ABCD的體積;
(2)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在中,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),的延長(zhǎng)線交與點(diǎn)。
(1)求的值;
(2)若的面積為,四邊形的面積為,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)
如圖,在棱長(zhǎng)為3的正方體中,.
⑴求兩條異面直線與所成角的余弦值;
⑵求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
如圖,已知平面QBC與直線PA均垂直于所在平面,且PA=AB=AC.
(Ⅰ)求證:PA∥平面QBC;
(Ⅱ)若,求二面角Q-PB-A的余弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com