(本小題12分)
如圖,在中,邊上的高,,沿翻折,使得得幾何體

(Ⅰ)求證:;
(Ⅱ)求點D到面ABC的距離。

(1)根據(jù)題意,由于平面.,那么結合性質定理,以及余弦定理得到 ,進而得到證明。
(2)

解析試題分析:解:(Ⅰ)因為,所以平面.    2分
又因為平面所以
中,,由余弦定理,

因為,所以,即.②          5分
由①,②及,可得平面        .6分
(Ⅱ)過D點作DEBC,垂足為E點
由(Ⅰ)知平面 
∵AC面ABC
∴面ABC面BCD                                      8分
又∵面ABC面BCD=BC
∴DE面ABC
∴DE即為點D到面ABC的距離                           10分
∵在RtBCD中,BC·DE=BD·CD
∴2DE=1×
∴DE=
∴點D到面ABC的距離為                            12分
考點:點面距離以及線面的垂直
點評:解決的關鍵是根據(jù)已知的線面的垂直的判定定理和性質定理得到證明,同時能利用做面的垂線得到距離,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(理科)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點.

(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3) 若P是棱A1C1上一點,求CP+PB1的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD =12 BC. 點E、F分別是棱PB、邊CD的中點.(1)求證:AB⊥面PAD; (2)求證:EF∥面PAD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M為AD中點.

(Ⅰ) 證明
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
如圖1,在等腰梯形CDEF中,CB、DA是梯形的高,,現(xiàn)將梯形沿CB、DA折起,使,得一簡單組合體如圖2示,已知分別為的中點.

圖1                                圖2
(1)求證:平面;
(2)求證:;
(3)當多長時,平面與平面所成的銳二面角為?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知三棱錐O-ABC的側棱OA,OB,OC兩兩垂直,且OA=2,OB=3,OC=4,E是OC的中點.

(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,在多面體中,平面∥平面, ⊥平面,,
 ,

(Ⅰ)求證:平面;
(Ⅱ)求證:∥平面;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題12分)在直角梯形PBCD中,,A為PD的中點,如下左圖。將沿AB折到的位置,使,點E在SD上,且,如下圖。

(1)求證:平面ABCD;
(2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)如圖,在三棱錐S—ABC中,是邊長為4的正三角形,平面SAC⊥平面ABC,SA =" SC" =,M、N分別為AB、SB的中點。

⑴ 求證:AC⊥SB;
⑵ 求二面角N—CM—B的正切值;
⑶ 求點B到平面CMN的距離。

查看答案和解析>>

同步練習冊答案