【題目】已知函數(shù)為偶函數(shù),

1)求實(shí)數(shù)的值;

2)若時(shí),函數(shù)的圖像恒在圖像的下方,求實(shí)數(shù)的取值范圍;

3)當(dāng)時(shí),求函數(shù)上的最小值

【答案】123

【解析】

1)利用函數(shù)是偶函數(shù),建立方程進(jìn)行求解即可(2)將不等式轉(zhuǎn)化為恒成立,利用參數(shù)分離法進(jìn)行求解即可(3)利用換元法結(jié)合指數(shù)的性質(zhì),轉(zhuǎn)化為一元二次函數(shù),結(jié)合函數(shù)單調(diào)區(qū)間和對(duì)稱軸的關(guān)系進(jìn)行求解即可.

1 函數(shù)為偶函數(shù),

,

,

,

解得,即.

2)若時(shí),函數(shù)的圖像恒在圖像的下方,

恒成立,

,

化簡(jiǎn)得

恒成立,

上單調(diào)遞減,

當(dāng)時(shí),函數(shù)取得最大值,

,

3)當(dāng)時(shí),

函數(shù) ,

設(shè),

,

,

則設(shè)

函數(shù)的對(duì)稱軸為,

,

,即時(shí),則函數(shù)在上的最小值,

,即時(shí),則函數(shù)在上的最小值,

綜上函數(shù)在上的最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某班學(xué)生喜好體育運(yùn)動(dòng)是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

喜好體育運(yùn)動(dòng)

不喜好體育運(yùn)動(dòng)

合計(jì)

男生

5

女生

10

合計(jì)

50

已知按喜好體育運(yùn)動(dòng)與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運(yùn)動(dòng)的人數(shù)為6.

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

(2)能否在犯錯(cuò)概率不超過(guò)的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說(shuō)明你的理由.

(參考公式: )

臨界值表

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果對(duì)定義在R上的函數(shù),對(duì)任意兩個(gè)不相等的實(shí)數(shù)都有

以上函數(shù)是的所有序號(hào)為_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與直線相切于點(diǎn),圓心軸上.

(1)求圓的方程;

(2)過(guò)點(diǎn)且不與軸重合的直線與圓相交于兩點(diǎn),為坐標(biāo)原點(diǎn),直線分別與直線相交于兩點(diǎn),記,的面積分別是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體的棱長(zhǎng)為4,動(dòng)點(diǎn)E,F在棱上,動(dòng)點(diǎn)P,Q分別在棱ADCD上。若,,大于零),則四面體PEFQ的體積

A.都有關(guān)B.m有關(guān),與無(wú)關(guān)

C.p有關(guān),與無(wú)關(guān)D.π有關(guān),與無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn)且離心率為.

(1)求橢圓C的方程;

(2)是否存在過(guò)點(diǎn)的直線與橢圓C相交于A,B兩點(diǎn),且滿足.若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】蚌埠市某中學(xué)高三年級(jí)從甲(文)、乙(理)兩個(gè)科組各選出名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽?jī)的莖葉圖如圖所示,其中甲組學(xué)生的平均分是,乙組學(xué)生成績(jī)的中位數(shù)是

1)求的值;

2)計(jì)算甲組位學(xué)生成績(jī)的方差

3)從成績(jī)?cè)?/span>分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求甲組至少有一名學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),直線,圓.

1)求的取值范圍,并求出圓心坐標(biāo);

2)有一動(dòng)圓的半徑為,圓心在上,若動(dòng)圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案