在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,且cosA=
1
3
,則sin2
B+C
2
+cos2A的值為(  )
A、
1
9
B、-
1
9
C、
1
10
D、-
1
10
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用
專(zhuān)題:三角函數(shù)的求值
分析:根據(jù)誘導(dǎo)公式和二倍角的余弦公式,將原式化簡(jiǎn)得到關(guān)于cosA的式子,代入已知數(shù)據(jù)即可得到所求.
解答: 解:∵cosA=
1
3
,
∵sin2
B+C
2
=
1
2
[1-cos(B+C)]=
1
2
(1+cosA),
∴sin2
B+C
2
+cos2A=
1
2
(1+cosA)+(2cos2A-1)=
1
2
(1+
1
3
)+(
2
9
-1)=-
1
9
;
故選:B.
點(diǎn)評(píng):本題著重考查了三角恒等變換、二倍角公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x∈[1,5]時(shí),函數(shù)f(x)=3x2-4x+c的值域?yàn)椋ā 。?/div>
A、[f(1),f(5)]
B、[f(1),f(
2
3
)]
C、[f(
2
3
),f(5)]
D、[c,f(5)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐P-ABCD,底面四邊形ABCD為菱形,AB=2,BD=2
3
,M,N分別是線(xiàn)段PA,PC的中點(diǎn).
(Ⅰ)求證:MN∥平面ABCD;
(Ⅱ)求異面直線(xiàn)MN與BC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,5),B(3,9),O為坐標(biāo)原點(diǎn),若點(diǎn)C滿(mǎn)足
OC
OA
OB
,其中α,β∈R,且α+β=1,則點(diǎn)C的軌跡方程為( 。
A、2x+y-7=0
B、2x-y+3=0
C、x-2y+9=0
D、x+2y-11=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)y=kx是曲線(xiàn)y=cosx的一條切線(xiàn),則實(shí)數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列前n項(xiàng)和為n3,且前n個(gè)偶數(shù)項(xiàng)的和為n2(4n+3),則前n個(gè)奇數(shù)項(xiàng)的和為( 。
A、-3n2(n+1)
B、n2(4n-3)
C、-3n2
D、
1
2
n3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2ax+a-1.
(1)若函數(shù)f(x)在區(qū)間[-1,1]上具有單調(diào)性,求a的取值范圍;
(2)若函數(shù)f(x)在區(qū)間[-1,1]上的最小值為-3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從5名男生,3名女生中選4名代表,至少有1名女生的選法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問(wèn)題時(shí),發(fā)現(xiàn)有這樣一列數(shù):1,1,2,3,5,8,13,…,其中從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和,人們把這樣的一列數(shù)所組成的數(shù)列{an}稱(chēng)為“斐波那契數(shù)列”.那么
a
2
1
+
a
2
2
+
a
2
3
+…+
a
2
2015
a2015
是斐波那契數(shù)列中的第
 
項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案