(滿分12分)已知函數(shù).(Ⅰ) 求上的最小值;(Ⅱ) 若存在是常數(shù),=2.71828)使不等式成立,求實數(shù)的取值范圍;
(Ⅲ) 證明對一切都有成立.
(Ⅰ)
;
(Ⅱ)
(Ⅲ) 見解析。

試題分析:(Ⅰ)

…………4分
(Ⅱ)由題意知

,
,故..          …………8分
(Ⅲ) 等價證明
由(Ⅰ)知


.。...          …………12分
點評:利用導數(shù)研究函數(shù)單調性、確定函數(shù)最值、證明不等式,是導數(shù)的基本應用。這類題解法思路明確,需要細心細致地計算。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,有一邊長為2米的正方形鋼板缺損一角(圖中的陰影部分),邊緣線是以直線為對稱軸,以線段的中點為頂點的拋物線的一部分.工人師傅要將缺損一角切割下來,使剩余的部分成為一個直角梯形.

(Ⅰ)請建立適當?shù)闹苯亲鴺讼担箨幱安糠值倪吘壘的方程;
(Ⅱ)如何畫出切割路徑,使得剩余部分即直角梯形的面積最大?
并求其最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的的單調遞增區(qū)間是 (    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)
已知函數(shù),的導函數(shù)(為自然對數(shù)的底數(shù))
(Ⅰ)解關于的不等式:
(Ⅱ)若有兩個極值點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,,且,則夾角的取值范圍是     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù).
(Ⅰ)若,求的最小值;
(Ⅱ)若,討論函數(shù)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知,其中是自然對數(shù)的底數(shù),
(1)討論時,的單調性。
(2)求證:在(1)條件下,
(3)是否存在實數(shù),使得最小值是3,如果存在,求出的值;如果不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的單調遞增區(qū)間為____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調區(qū)間與極值點;
(2)若,方程有三個不同的根,求的取值范圍。

查看答案和解析>>

同步練習冊答案