分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+2y≤2}\end{array}\right.$作出可行域如圖,
化目標(biāo)函數(shù)z=x-y為y=x-z,
由圖可知,當(dāng)直線y=x-z過(guò)A(2,0)時(shí),直線在y軸上的截距最小,z有最大值為2;
當(dāng)直線y=x-z過(guò)B(0,1)時(shí),直線在y軸上的截距最大,z有最小值為-1.
∴a=2,b=-1,則a+b=1.
故答案為:1.
點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 66 | B. | 78 | C. | 105 | D. | 120 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x$≥-\sqrt{2}$} | B. | {x|-$\sqrt{2}$≤x≤-1} | C. | {x|-$\sqrt{2}≤x≤\sqrt{2}$} | D. | {x|-1$≤x≤\sqrt{2}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,3) | B. | (1,2] | C. | $(\frac{1}{2},\frac{7}{2})$ | D. | 以上均不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①③ | B. | ①④ | C. | ①③④ | D. | ①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
得分 | [60,70) | [70,80) | [80,90) | [90,100] |
甲 | 5 | 10 | 34 | 11 |
乙 | 8 | 12 | 31 | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 復(fù)數(shù)的?偸钦龑(shí)數(shù) | |
B. | 復(fù)數(shù)集與復(fù)平面內(nèi)所有向量組成的集合一一對(duì)應(yīng) | |
C. | 如果與復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在第一象限,則與該復(fù)數(shù)對(duì)應(yīng)的向量的終點(diǎn)也一定會(huì)在第一象限 | |
D. | 相等的向量對(duì)應(yīng)著相等的復(fù)數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com