(21) (本小題滿分15分)
直線
分拋物線
與
軸所圍成圖形為面積相等的兩個部分,求
的值.
解:解方程組
得:直線
分拋物線
的交點的橫坐標為
和
┅┅┅┅┅┅┅┅┅┅
拋物線
與
軸所圍成圖形為面積為
┅┅┅┅┅
由題設得
┅┅┅┅┅┅┅
又
,所以
,從而得:
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知向量
動點
到定直線
的距離等于
并且滿足
其中
是坐標原點,
是參數(shù).
(1)求動點
的軌跡方程,并判斷曲線類型;
(2)當
時,求
的最大值和最小值;
(3)如果動點
的軌跡是圓錐曲線,其離心率
滿足
求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓
(
)的右焦點為
,離心率為
.
(Ⅰ)若
,求橢圓的方程;
(Ⅱ)設直線
與橢圓相交于
,
兩點,
分別為線段
的中點. 若坐標原點
在以
為直徑的圓上,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
(a>b>0)與雙曲線
有公共的焦點,C
2的一條漸近線與以C
1的長軸為直徑的圓相交于
兩點.若C
1恰好將線段
三等分,則
A.a(chǎn)2 = | B.a(chǎn)2="13" | C.b2= | D.b2=2 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
是雙曲線
的兩個焦點,點
在雙曲線上,且滿足:
,
,則
的值為( )
A.2 | B.1 | C. | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分15分)
已知定點A(0,1),B(0,-1),C(1,0).動點P滿足:
.
(1)求動點P的軌跡方程,并說明方程表示的曲線類型;
(2)當
時,求
的最大、最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知以點
C (
t,
)(
t∈R),
t≠0)為圓心的圓與
x軸交于點
O,
A,與
y軸交于點
O,
B,其中
O為坐標原點.
(1)求證:
△OAB的面積為定值;
(2)設直線
y= –2
x+4與圓
C交于點
M,
N若|
OM|=|
ON|,求圓
C的方程.
(3)若
t>0,當圓
C的半徑最小時,圓
C上至少有三個不同的點到直線
l:
y –
的距離為
,求直線
l的斜率
k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在直角坐標系
中,點
到點
,
的距離之和是
,點
的軌跡
與
軸的負半軸交于點
,不過點
的直線
與軌跡
交于不同的兩點
和
.
⑴求軌跡
的方程;
⑵當
時,證明直線
過定點.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
.(本小題滿分12分)
在△ABC中,頂點A(-1,0),B(1,0),動點D,E滿足:
①
;②|
|=
|
|=
|
|③
與
共線.
(Ⅰ)求△ABC頂點C的軌跡方程;
(Ⅱ) 若斜率為1直線
l與動點C的軌跡交于M,N兩點,且
·
=0,求直線
l的方程.
查看答案和解析>>