拋物線y=-4x2上的一點M到焦點距離為2,則點M的縱坐標(biāo)是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    -1
  4. D.
    -3
A
分析:將拋物線y=-4x2的方程標(biāo)準(zhǔn)化,可求得其準(zhǔn)線方程,利用拋物線的定義,將M到焦點距離轉(zhuǎn)化為它到準(zhǔn)線的距離即可求得點M的縱坐標(biāo).
解答:∵y=-4x2,
∴x2=-y,
∴其焦點F的坐標(biāo)為F(0,-),
∵拋物線y=-4x2上的一點M(x0,y0)到焦點距離為2,
由拋物線的定義得:-y0=2,
∴y0=-,即點M的縱坐標(biāo)是-
故選A.
點評:本題考查拋物線的簡單性質(zhì),著重考查拋物線的定義,考查轉(zhuǎn)化思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=4x2上的一點M到焦點的距離為1,則點M的縱坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=4x2上一點到直線y=4x-5的距離最短,則該點的坐標(biāo)是(  )
A、(1,2)
B、(0,0)
C、(
1
2
,1)
D、(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在拋物線y=4x2上求一點,使這點到直線y=4x-5的距離最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=-4x2上的一點M到焦點的距離為1,則點M的縱坐標(biāo)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=-4x2上的一點M到焦點距離為2,則點M的縱坐標(biāo)是( 。

查看答案和解析>>

同步練習(xí)冊答案