2.函數(shù)y=sinx的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位而得到的函數(shù)解析式可以是(  )
A.y=sin(x+$\frac{π}{6}$)B.y=sin(x-$\frac{π}{6}$)C.y=sinx+$\frac{π}{6}$D.y=sinx-$\frac{π}{6}$

分析 由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:函數(shù)y=sinx的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位而得到的函數(shù)解析式可以是y=sin(x+$\frac{π}{6}$),
故選:A.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知二次函數(shù)f(x)=(m-2)x2+(m2-3x+2)x+m為偶函數(shù),求m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.中心在原點(diǎn),實(shí)軸長(zhǎng)為4$\sqrt{3}$,離心率為e=$\sqrt{3}$,焦點(diǎn)在y軸上的雙曲線的標(biāo)準(zhǔn)方程是(  )
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{36}$=1B.$\frac{{y}^{2}}{12}$-$\frac{{y}^{2}}{36}$=1C.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{24}$=1D.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{24}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}滿(mǎn)足a1=2,an=a${\;}_{n-1}^{2}$(n≥2),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖所示,兩個(gè)四分之一圓面ACD和GCH交于點(diǎn)C點(diǎn),AD=CH=10厘米,∠EAB=∠FGC=60°,EB與FI分別垂直于AC和GC,則陰影部分為85.28平方厘米.(π取3.14)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若集合A={x|ax2+2x+1=0,x∈R}中至多含有一個(gè)元素,則實(shí)數(shù)a的取值范圍用區(qū)間表示為[1,+∞)∪{0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若∠A=22°,∠B=23°,則(1+tanA)(1+tanB)的值是( 。
A.$\sqrt{3}$B.2C.1+$\sqrt{2}$D.2(tanA+tanB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知數(shù)列{an}為等差數(shù)列,且a2=4,a6=12,則公差d=(  )
A.6B.3C.8D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.(1)已知集合A={a-2,a2-2,12},且-1∈A,求實(shí)數(shù)a的值;
(2)已知全集U={2,3,a2-2a-3},A={b,2},∁UA={5},求a、b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案