13.已知{an}是正項(xiàng)數(shù)列,a1=1,且點(diǎn)($\sqrt{a_n}$,an+1)在函數(shù)y=x2+1的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,bn+1=bn+2an,求數(shù)列{bn}的前n項(xiàng)和Sn

分析 (1)由已知得an+1=a1+1,從而數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列,由此能求出數(shù)列{an}的通項(xiàng)公式.
(2)由已知bn+1-bn=2n,利用累加法求出bn=n2-n+1.由此能求出數(shù)列{bn}的前n項(xiàng)和.

解答 解:(1)∵{an}是正項(xiàng)數(shù)列,a1=1,且點(diǎn)($\sqrt{a_n}$,an+1)在函數(shù)y=x2+1的圖象上,
∴an+1=a1+1,
∴數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列,
∴an=1+(n-1)×1=n.
(2)∵數(shù)列{bn}滿足b1=1,bn+1=bn+2an=bn+2n,
∴bn+1-bn=2n,
∴bn=b1+b2-b1+b3-b2+b4-b3+…+bn-bn-1
=1+2+4+6+…+2(n-1)
=1+$\frac{n-1}{2}(2+2n-2)$
=n2-n+1.
∴數(shù)列{bn}的前n項(xiàng)和:
Sn=(12+22+32+…+n2)-(1+2+3+…+n)+n
=$\frac{1}{6}$n(n+1)(2n+1)-$\frac{n(n+1)}{2}$+n.

點(diǎn)評 本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時要認(rèn)真審題,注意分組求和法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將函數(shù)y=sinx-$\sqrt{3}$cosx的圖象沿x軸向右平移a個單位(a>0),所得圖象關(guān)于y軸對稱,則a的值可以是( 。
A.$\frac{π}{6}$B.$\frac{π}{2}$C.-$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐E-ABCD中,底面ABCD是正方形,AC與BD交于點(diǎn)O,EC⊥底面ABCD,F(xiàn)為BE的中點(diǎn).
(1)求證:DE∥平面ACF;
(2)若AB=$\sqrt{2}$CE,在線段EO上是否存在點(diǎn)G,使得CG⊥平面BDE?若存在,請證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.以181開頭的手機(jī)號中末位數(shù)字是5或8的號碼一共有多少個(一個手機(jī)號共有11位)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在6張演唱會入場券中有一、二、三排座位入場券各一張,其余3張無座位(無座位入場券沒有區(qū)別),將這6張入場券分配給甲、乙、丙3個人,每人2張,甲能分到有座位的入場券的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.3名學(xué)生與3名老師站成一排照相,如果要求老師學(xué)生相間站,則有72種排法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.有1角的硬幣3枚,2元幣6張,100元幣4張,共可組成多少種不同的幣值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知an是二項(xiàng)式(2+$\sqrt{x}$)n(其中n=2,3,4,…)的展開式中x的二項(xiàng)式系數(shù),若數(shù)列{bn}滿足b1=160,bn=$\frac{2{a}_{n+2}{a}_{n+3}}{(n+2){a}_{n+1}}$(n≥2,n∈N*),則數(shù)列{bn}的最小項(xiàng)是( 。
A.40B.10C.160D.320

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若數(shù)列{an}滿足:a1=0,且an=an-1+2n-1(n∈N*,n≥2),數(shù)列{bn}滿足bn=$\sqrt{{a}_{n}+1}$•$\sqrt{{a}_{n+1}+1}$•($\frac{8}{11}$)n-1,則數(shù)列{bn}的最大項(xiàng)為第6項(xiàng).

查看答案和解析>>

同步練習(xí)冊答案