18.3名學(xué)生與3名老師站成一排照相,如果要求老師學(xué)生相間站,則有72種排法.

分析 先排學(xué)生,然后把老師插入到相對應(yīng)的間隔中,只有兩種間隔法,即老師在排頭,或?qū)W生在排頭,問題得以解決.

解答 只有兩種間隔法,即老師在排頭,或?qū)W生在排頭,可得共有 2A33A33=72 種不同的排法.
故答案為:72.

點(diǎn)評 本題主要考查排列、組合以及簡單計(jì)數(shù)原理的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,注意把特殊元素與位置綜合分析.相鄰問題用“捆綁法”,不相鄰問題用“插空法”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知x>0,y>0,x+y+$\sqrt{xy}$=2,則x+y的最小值是( 。
A.$\frac{2}{3}$B.1C.$\frac{4}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.從五名學(xué)生中選出四人分別參加語文、數(shù)學(xué)、英語和專業(yè)綜合知識競賽.其中學(xué)生甲不參加語文和數(shù)學(xué)競賽,則不同的參賽方法共有72種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.2015年7月31日,國際奧委會在吉隆坡正式宣布2022年奧林匹克冬季奧運(yùn)會(簡稱冬奧會)在北京和張家口兩個城市舉辦.某中學(xué)為了普及奧運(yùn)會知識,舉行了一次奧運(yùn)知識競賽.隨機(jī)抽取了30名學(xué)生的成績,繪成如圖所示的莖葉圖,若規(guī)定成績在75分以上(包括75分)的學(xué)生定義為甲組,成績在75分以下(不包括75分)定義為乙組.
(1)求甲組學(xué)生的平均分;
(2)在這30名學(xué)生中,甲組學(xué)生中有男生7人,乙組學(xué)生中有女生12人,試問有沒有90%的把握認(rèn)為成績分在甲組或乙組與性別有關(guān);
(3)①如果用分層抽樣的方法從甲組和乙組中抽取5人,再從這5人中隨機(jī)抽取2人,那么至少有1人在甲組的概率是多少?
②用樣本估計(jì)總體,把頻率作為概率,若從該地區(qū)所有的中學(xué)(人數(shù)很多)中隨機(jī)選取3人,用ξ表示所選3人中甲組的人數(shù),試寫出ξ的分布列,并求出ξ的數(shù)學(xué)期望.
P(K2>k00.1000.0500.010
K2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知{an}是正項(xiàng)數(shù)列,a1=1,且點(diǎn)($\sqrt{a_n}$,an+1)在函數(shù)y=x2+1的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,bn+1=bn+2an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知線段AB的長為2,動點(diǎn)C滿足$\overrightarrow{CA}$•$\overrightarrow{CB}$=λ(λ為負(fù)常數(shù)),且點(diǎn)C總不在以點(diǎn)B為圓心,$\frac{1}{2}$為半徑的圓內(nèi),則實(shí)數(shù)λ的最大值是-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=-$\frac{1}{x}$,g(x)與f(x)的圖象關(guān)于點(diǎn)M(-$\frac{1}{2}$,$\frac{1}{2}$)對稱.
(1)求g(x)解析式;
(2)若g(2x)=a有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知全集為R,集合A={x|$\frac{x-1}{x}$<0},B={x|x≥1},則A∪B等于( 。
A.{x|x>0}B.{x|0<x<1}C.{x|x<1}D.{x|x≤0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義A⊕B={Z|z=xy(x+y),x∈A,y∈B},若A={x|x2-x=0},B={x|x2-3x+2=0}則A?B的子集個數(shù)為( 。
A.2B.4C.8D.16

查看答案和解析>>

同步練習(xí)冊答案