在長方體ABCDA1B1C1D1中,點(diǎn)E、F分別在A1B、A1D上,且AEA1B,AFA1D.

(1)求證:A1C⊥平面AEF;

(2)若規(guī)定兩個(gè)平面所成的角是這兩個(gè)平面所組成的二面角中的銳角(或直角),則在空間中有定理:若兩條直線分別垂直于兩個(gè)平面,則這兩條直線所成的角與這兩個(gè)平面所成角相等.

試根據(jù)上述定理,在AB=4,AD=3,AA1=5時(shí),求平面AEF與平面D1B1BD所成的角的大小.

解析:建立如圖所示直角坐標(biāo)系.?

?

(1)證明:∵CB⊥面ABB1A1,A1BAE,∴A1CAE.?

同理,A1CAF,AFAE=A.?

A1C⊥面AEF.?

(2)由題意得A1C⊥面AEF.?

設(shè)xAy平面內(nèi)的單位向量為e,?

e=(x,y,0),e⊥BB1,只需e⊥BD即可.?

B(4,0,0),D(0,3,0),=(-4,3,0),?

∴e=(,,0).?

∴兩面夾角即為e與向量的夾角.?

A1(0,0,5),C(4,3,0),?

=(4,3,-5).?

∴cosθ=.?

θarccos.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,則AA′和BC′所成的角是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A′B′C′D′中,用截面截下一個(gè)棱錐C-A′DD′,求棱錐C-A′DD′的體積與剩余部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海) 如圖,在長方體ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.證明直線BC′平行于平面D′AC,并求直線BC′到平面D′AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•青浦區(qū)二模)(理)在長方體ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)頂點(diǎn)D'到平面B'AC的距離;
(2)二面角B-AC-B'的大小.(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知在長方體ABCD-A′B′C′D′中,點(diǎn)E為棱CC′上任意一點(diǎn),AB=BC=2,CC′=1.
(Ⅰ)求證:平面ACC′A′⊥平面BDE;
(Ⅱ)若點(diǎn)P為棱C′D′的中點(diǎn),點(diǎn)E為棱CC′的中點(diǎn),求二面角P-BD-E的余弦值.

查看答案和解析>>

同步練習(xí)冊答案