分析 (I)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.
(II)${b_n}={3^{a_n}}+{({-1})^n}•{a_n}={3^{2n-1}}+{({-1})^n}•({2n-1})$.對(duì)n分類討論求和即可得出.
解答 解:(Ⅰ)因?yàn)閧an}為等差數(shù)列,S4=16,
所以${S_4}=4{a_1}+\frac{4×3}{2}d=16$,即2a1+3d=8①
又因?yàn)閍2,a5,a14成等比數(shù)列,則${({a_1}+4d)^2}=({a_1}+d)•({a_1}+13d)$
整理得$2{a_1}d={d^2}$②…(4分)
由①②且d≠0得a1=1,d=2,所以an=2n-1…(6分)
(Ⅱ)∵${b_n}={3^{a_n}}+{({-1})^n}•{a_n}={3^{2n-1}}+{({-1})^n}•({2n-1})$.
∴${T_n}=({3^1}+{3^3}+…+{3^{2n-1}})+[-1+3-5+7-…+{(-1)^n}(2n-1)]$,
當(dāng)n為偶數(shù)時(shí),${T_n}=\frac{{3(1-{9^n})}}{1-9}+\frac{n}{2}•2=\frac{1}{8}•{3^{2n+1}}+n-\frac{3}{8}$…(9分)
當(dāng)n為奇數(shù)時(shí),${T_n}=\frac{{3(1-{9^n})}}{1-9}+\frac{n-1}{2}•2-(2n-1)=\frac{1}{8}•{3^{2n+1}}-n-\frac{3}{8}$…(12分)
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式、分類討論方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25 | B. | 20 | C. | 15 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 31 | B. | 62 | C. | 64 | D. | 128 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com