關(guān)于x的不等式(m-2)x2-mx-1≥0的解集為{x|x1≤x≤x2},且1≤|x1-x2|≤3,求實(shí)數(shù)m的取值范圍.
考點(diǎn):一元二次不等式的解法
專題:方程思想
分析:(m-2)x2-mx-1≥0的解為x1≤x≤x2,所以m-2<0,m<2
1≤|x1-x2|≤3,所以1≤(x1+x2)^2-4x1x2≤9,代入再求出m
解答: 解:關(guān)于x的不等式(m-2)x2-mx-1≥0的解集為{x|x1≤x≤x2},所以方程(m-2)x2-mx-1=0的根為x1,x2. x1+x2=
m
m-2
,x1×x2=-
1
m-2

∵1≤|x1-x2|≤3,∴1≤(x1+x22-4x1x2
m24m-8
(m-2)2
≤9
,且(m-2)<0,∴
3
2
≤m≤
5-
3
2
,
故答案為:
3
2
≤m≤
5-
3
2
點(diǎn)評(píng):考察了二次函數(shù)和二次不等式,二次方程的轉(zhuǎn)換關(guān)系,用韋達(dá)定理解決
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2013年第三季度,國(guó)家電網(wǎng)決定對(duì)城鎮(zhèn)居民民用電計(jì)費(fèi)標(biāo)準(zhǔn)做出調(diào)整,并根據(jù)用電情況將居民分為三類:第一類的用電區(qū)間在(0,170],第二類在(170,260],第三類在(260,+∞)(單位:千瓦時(shí)).某小區(qū)共有1000戶居民,現(xiàn)對(duì)他們的用電情況進(jìn)行調(diào)查,得到頻率分布直方圖如圖所示.
(1)求該小區(qū)居民用電量的平均數(shù);
(2)利用分層抽樣的方法從該小區(qū)內(nèi)選出10位居民代表,若從該10戶居民代表中任選兩戶居民,求這兩戶居民用電資費(fèi)屬于不同類型的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角△ABC中,已知內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,向量
x
=(2sinB,
3
),
y
=(2cos2B-1,cosB),且向量
x
y
共線.
(1)求角B的大。
(Ⅱ)如果b=1,求△ABC的面積S△ABC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A,B,C所對(duì)的邊分別為a,b,c,tanA+tanB+
3
tanAtanB=
3
,c=3.
(Ⅰ)求C;
(Ⅱ)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2ax,把函數(shù)f(x)的圖象向左平移1個(gè)單位,得到函數(shù)y=g(x)的圖象.
(1)若g(x)為偶函數(shù),求實(shí)數(shù)a的值;
(2)若2f(x)-g(x)+2(x-a)>0對(duì)于x∈[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值-
4
3
.求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校舉行投籃比賽,比賽規(guī)則如下:每次投籃投中一次得2分,未中扣1分,每位同學(xué)原始積分均為0分,當(dāng)累積得分少于或等于-2分則停止投籃,否則繼續(xù),每位同學(xué)最多投籃5次.且規(guī)定總共投中5、4、3次的同學(xué)分別為一、二、三等獎(jiǎng),獎(jiǎng)金分別為30元、20元、10元.某班甲、乙、丙同學(xué)相約參加此活動(dòng),他們每次投籃命中的概率均為
1
2
,且互不影響.
(1)求甲同學(xué)能獲獎(jiǎng)的概率;
(2)記甲、乙、丙三位同學(xué)獲得獎(jiǎng)金總數(shù)為X,求X的期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,頂點(diǎn)A的坐標(biāo)為(1,4),∠ABC的平分線所在直線方程為x-2y=0,∠ACB的平分線所在直線方程為x+y-1=0,求BC邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x2-(k2+k+1)x+15,g(x)=k2x-k,其中k∈R.
(1)若f(x)+g(x)≥0,對(duì)x∈[1,4)恒成立,求實(shí)數(shù)k的取值范圍;
(2)設(shè)函數(shù)q(x)=
g(x),x≥0
f(x),x<0
是否存在實(shí)數(shù)k,對(duì)任意給定的非零實(shí)數(shù)x1,存在唯一的非零實(shí)數(shù)x2(x2≠x1),使得q(x2)=q(x1)?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案