12.計(jì)算3${\;}^{-lo{g}_{3}2}$+lg$\frac{1}{2}$-lg5+2-1的結(jié)果為0.

分析 根據(jù)對(duì)數(shù)和指數(shù)的運(yùn)算性質(zhì)計(jì)算即可.

解答 解:${3^{-{{log}_3}2}}+lg\frac{1}{2}-lg5+{2^{-1}}$=${3^{{{log}_3}{2^{-1}}}}+lg{2^{-1}}-lg5+{2^{-1}}$=2-1-lg2-lg5+2-1=$\frac{1}{2}-({lg2+lg5})+\frac{1}{2}=1-lg10=1-1=0$.
故答案為:0

點(diǎn)評(píng) 本題考查了對(duì)數(shù)和指數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=$\frac{x}{cosx}$,x∈(-$\frac{π}{2},\frac{π}{2}$),當(dāng)|xi|<$\frac{π}{2}$(i=1,2,3)時(shí),f(x1)+f(x2)<0,f(x2)+f(x3)<0,f(x3)+f(x1)<0,則有( 。
A.x1+x2+x3>0B.x1+x2+x3=0
C.x1+x2+x3<0D.x1+x2+x3的符號(hào)不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)f(x)=2cos2x+4asinx+a-3.
(1)若x∈R時(shí),f(x)的最大值為1,求a的值;
(2)若關(guān)于x的方程f(x)=0在區(qū)間[0,π]上有兩個(gè)不同的實(shí)數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,若$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)k=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知i2=-1,復(fù)數(shù)z=i(1-i),則|z|=( 。
A.1B.$\sqrt{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,已知3S2=a3-2,3S1=a2-2,則公比q=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)fM(x)的定義域?yàn)镽,且定義如下:fM(x)=$\left\{\begin{array}{l}{x,x∈M}\\{\frac{1}{x},x∉M}\end{array}\right.$(M是實(shí)數(shù)集R的非空真子集),若A={x||x-1|≤2},B={x|-1≤x<1},則F(x)=$\frac{2{f}_{A∪B}(x)+1}{{f}_{A}(x)+{f}_{B}(x)+1}$的最大值為$\frac{21}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.從0,1,2,3,4,這五個(gè)數(shù)字中任取3個(gè)組成空間直角坐標(biāo),那么一共有多少個(gè)不同的坐標(biāo)60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知籃球比賽中,得分規(guī)則如下:3分線外側(cè)投入可得3分,踩線及3分線內(nèi)側(cè)投入可得2分,不進(jìn)得0分;經(jīng)過(guò)多次試驗(yàn),某生投籃100次,有20個(gè)是3分線外側(cè)投入,30個(gè)是踩線及3分線內(nèi)側(cè)投入,其余不能入籃,且每次投籃為相互獨(dú)立事件.
(1)求該生在4次投籃中恰有三次是3分線外側(cè)投入的概率;
(2)求該生兩次投籃后得分ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案