【題目】已知某中學(xué)聯(lián)盟舉行了一次“盟校質(zhì)量調(diào)研考試”活動(dòng),為了解本次考試學(xué)生的某學(xué)科成績(jī)情況,從中抽取部分學(xué)生的分?jǐn)?shù)(滿分為分,得分取正整數(shù),抽取學(xué)生的分?jǐn)?shù)均在之內(nèi))作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì),按照的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(莖葉圖中僅列出了得分在的數(shù)據(jù))
(Ⅰ)求樣本容量和頻率分布直方圖中的的值;
(Ⅱ)在選取的樣本中,從成績(jī)?cè)?/span>分以上(含分)的學(xué)生中隨機(jī)抽取名學(xué)生參加“省級(jí)學(xué)科基礎(chǔ)知識(shí)競(jìng)賽”,求所抽取的名學(xué)生中恰有一人得分在內(nèi)的概率.
【答案】(1);(2).
【解析】試題分析:(Ⅰ)由樣本容量和頻數(shù)頻率的關(guān)系易得答案;(Ⅱ)由題意可知,分?jǐn)?shù)在[80,90)內(nèi)的學(xué)生有5人,記這5人分別為,分?jǐn)?shù)在[90,100]內(nèi)的學(xué)生有2人,記這2人分別為,列舉法易得
試題解析:(Ⅰ)由題意可知,樣本容量, ……2分
, ……4分
.……6分
(Ⅱ)由題意可知,分?jǐn)?shù)在內(nèi)的學(xué)生有5人,記這5人分別為,分?jǐn)?shù)在內(nèi)的學(xué)生有2人,記這2人分別為,抽取2名學(xué)生的所有情況有21種,分別為:
.
其中2名同學(xué)的分?jǐn)?shù)恰有一人在內(nèi)的情況有10種,
∴所抽取的2名學(xué)生中恰有一人得分在內(nèi)的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)實(shí)行裁員增效,已知現(xiàn)有員工人,每人每年可創(chuàng)純收益(已扣工資等)1萬(wàn)元,據(jù)評(píng)估,在生產(chǎn)條件不變的情況下,每裁員一人,則留崗員工每人每年可多創(chuàng)收0.01萬(wàn)元,但每年需付給下崗工人每位0.4萬(wàn)元的生活費(fèi),并且企業(yè)正常運(yùn)轉(zhuǎn)所需人數(shù)不得少于現(xiàn)有員工的,設(shè)該企業(yè)裁員人后,年純收益為萬(wàn)元.
(1)寫出關(guān)于的函數(shù)關(guān)系式,并指出的取值范圍;
(2)當(dāng)時(shí),該企業(yè)應(yīng)裁員多少人,才能獲得最大的經(jīng)濟(jì)效益(注:在保證能取得最大的經(jīng)濟(jì)效益的情況下,能少裁員,應(yīng)盡量少裁員)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)作一直線與拋物線交于,兩點(diǎn),點(diǎn)是拋物線上到直線的距離最小的點(diǎn),直線與直線交于點(diǎn).
(Ⅰ)求點(diǎn)的坐標(biāo);
(Ⅱ)求證:直線平行于拋物線的對(duì)稱軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線.
(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的倍后得到曲線.試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程:
(2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動(dòng):對(duì)首次消費(fèi)的顧客,按元/次收費(fèi), 并注冊(cè)成為會(huì)員, 對(duì)會(huì)員逐次消費(fèi)給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:
消費(fèi)次第 | 第次 | 第次 | 第次 | 第次 | 次 |
收費(fèi)比例 |
該公司從注冊(cè)的會(huì)員中, 隨機(jī)抽取了位進(jìn)行統(tǒng)計(jì), 得到統(tǒng)計(jì)數(shù)據(jù)如下:
消費(fèi)次第 | 第次 | 第次 | 第次 | 第次 | 第次 |
頻數(shù) |
假設(shè)汽車美容一次, 公司成本為元, 根據(jù)所給數(shù)據(jù), 解答下列問(wèn)題:
(1)估計(jì)該公司一位會(huì)員至少消費(fèi)兩次的概率;
(2)某會(huì)員僅消費(fèi)兩次, 求這兩次消費(fèi)中, 公司獲得的平均利潤(rùn);
(3)設(shè)該公司從至少消費(fèi)兩次, 求這的顧客消費(fèi)次數(shù)用分層抽樣方法抽出人, 再?gòu)倪@人中抽出人發(fā)放紀(jì)念品, 求抽出人中恰有人消費(fèi)兩次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與18秒之間,將測(cè)試結(jié)果按如下方式分成五組:第一組,第二組,…,第五組,下圖是按上述分組方法得到的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計(jì)這50名學(xué)生百米測(cè)試成績(jī)的平均值;
(2)若從第一組、第五組中隨機(jī)取出兩個(gè)成績(jī),求這兩個(gè)成績(jī)的差的絕對(duì)值大于1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一臺(tái)機(jī)器由于使用時(shí)間較長(zhǎng),生產(chǎn)的零件有一些會(huì)有缺損,按不同轉(zhuǎn)速生產(chǎn)出來(lái)的零件有缺損的統(tǒng)計(jì)數(shù)據(jù)如表所示:
(1)作出散點(diǎn)圖;
(2)如果與線性相關(guān),求出回歸直線方程.
(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺損的零件最多為10個(gè),那么,機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)某電子商務(wù)平臺(tái)的調(diào)查統(tǒng)計(jì)顯示,參與調(diào)查的位上網(wǎng)購(gòu)物者的年齡情況如下圖.
(1)已知、、三個(gè)年齡段的上網(wǎng)購(gòu)物者人數(shù)成等差數(shù)列,求的值;
(2)該電子商務(wù)平臺(tái)將年齡在之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵(lì)潛在消費(fèi)人群的消費(fèi),該平臺(tái)決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放元的代金券,潛在消費(fèi)人群每人發(fā)放元的代金券.已經(jīng)采用分層抽樣的方式從參與調(diào)查的位上網(wǎng)購(gòu)物者中抽取了人,現(xiàn)在要在這人中隨機(jī)抽取人進(jìn)行回訪,求此三人獲得代金券總和的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位射擊運(yùn)動(dòng)員,在某天訓(xùn)練中已各射擊10次,每次命中的環(huán)數(shù)如下:
甲 7 8 7 9 5 4 9 10 7 4
乙 9 5 7 8 7 6 8 6 7 7
(Ⅰ)通過(guò)計(jì)算估計(jì),甲、乙二人的射擊成績(jī)誰(shuí)更穩(wěn);
(Ⅱ)若規(guī)定命中8環(huán)及以上環(huán)數(shù)為優(yōu)秀,請(qǐng)依據(jù)上述數(shù)據(jù)估計(jì),在第11次射擊時(shí),甲、乙人分別獲得優(yōu)秀的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com