4.袋中裝有6只乒乓球,其中4只是白球,2只黃球,先后從袋中有放回地取出兩球,則取到兩球都是白球的概率是$\frac{4}{9}$.

分析 第一次和第二次取到白球的概率都是$\frac{4}{6}$,由此能求出連續(xù)取兩次都是白球的概率.

解答 解:連續(xù)取兩次都是紅球的概率P=$\frac{4}{6}$×$\frac{4}{6}$=$\frac{4}{9}$,
故答案為$\frac{4}{9}$.

點(diǎn)評(píng) 本題考查互斥事件概率的計(jì)算,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知圓C的方程為:x2+y2+2x-4y+k=0,(k∈R).
(1)求圓心C的坐標(biāo);
(2)求實(shí)數(shù)k的取值范圍;
(3)是否存在實(shí)數(shù)k,使直線l:x-2y+4=0與圓C相交于M、N兩點(diǎn),且OM⊥ON(O為坐標(biāo)原點(diǎn))若存在,求出k的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.命題“?x>0,ex-x-1≥0”的否定是?x>0,ex-x-1<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)定義域?yàn)閇0,+∞),當(dāng)x∈[0,1]時(shí),f(x)=sinπx,當(dāng)x∈[n,n+1]時(shí),f(x)=$\frac{f(x-n)}{{2}^{n}}$,其中n∈N,若函數(shù)f(x)的圖象與直線y=b有且僅有2016個(gè)交點(diǎn),則b的取值范圍是(  )
A.(0,1)B.($\frac{1}{{2}^{1007}}$,$\frac{1}{{2}^{1006}}$)C.($\frac{1}{{2}^{2017}}$,$\frac{1}{{2}^{2016}}$)D.($\frac{1}{{2}^{1008}}$,$\frac{1}{{2}^{1007}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知a∈R,若f(x)=(x+$\frac{a}{x}$-1)ex在區(qū)間(1,3)上有極值點(diǎn),則a的取值范圍是(-∞,-$\frac{27}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,點(diǎn)P為曲線C上任意一點(diǎn),且P到定點(diǎn)F(1,0)的距離比到y(tǒng)軸的距離多1.
(1)求曲線C的方程;
(2)點(diǎn)M為曲線C上一點(diǎn),過點(diǎn)M分別作傾斜角互補(bǔ)的直線MA,MB與曲線C分別交于A,B兩點(diǎn),過點(diǎn)F且與AB垂直的直線l與曲線C交于D,E兩點(diǎn),若|DE|=8,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)$f(x)=-|x|-\sqrt{x}+3$的零點(diǎn)所在區(qū)間為(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一般來說,一個(gè)人腳越長(zhǎng),他的身高就越高.現(xiàn)對(duì)10名成年人的腳長(zhǎng)x(單位:cm)與身高y(單位:cm)進(jìn)行測(cè)量,得如下數(shù)據(jù):
x20212223242526272829
y141146154160169176181188197203
作出散點(diǎn)圖后,發(fā)現(xiàn)散點(diǎn)在一條直線附近.經(jīng)計(jì)算得到一些數(shù)據(jù):
$\overline{x}$=24.5,$\overline{y}$=171.5,$\sum_{i=1}^{10}$(xi-$\overline{x}$)(yi-$\overline{y}$)=577.5,$\sum_{i=1}^{10}$(xi-$\overline{x}$)2=82.5
某刑偵人員在某案發(fā)現(xiàn)場(chǎng)發(fā)現(xiàn)一對(duì)裸腳印,量得每個(gè)腳印長(zhǎng)26.5cm,請(qǐng)你估計(jì)案發(fā)嫌疑人的身高為( 。
A.185B.185.5C.186D.186.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x|1<2x<8},集合B={x|0<log2x<1},則A∩B=(  )
A.{x|1<x<3}B.{x|1<x<2}C.{x|2<x<3}D.{x|0<x<2}

查看答案和解析>>

同步練習(xí)冊(cè)答案