在平面直角坐標系xOy中,已知橢圓C的中心在原點O,焦點在x軸上,短軸長為2,離心率為.

(1)求橢圓C的方程;

(2)設A,B是橢圓C上的兩點,△AOB的面積為.若A、B兩點關于x軸對稱,E為線段AB的中點,射線OE交橢圓C于點P.如果=t,求實數(shù)t的值.

 

(1)+y2=1

(2)t=2或t=

【解析】(1)設橢圓C的方程為:(a>b>0),

,解得a=,b=1,

故橢圓C的方程為+y2=1.

(2)由于A、B兩點關于x軸對稱,可設直線AB的方程為x=m(-<x<,且m≠0).

將x=m代入橢圓方程得|y|=,

所以S△AOB=|m| .

解得m2=或m2=.①

=tt()=t(2m,0)=(mt,0),

又點P在橢圓上,所以=1.②

由①②得t2=4或t2=.

又因為t>0,所以t=2或t=.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第九章計數(shù)原理與概率隨機變量及其分布(解析版) 題型:選擇題

閱讀程序框圖,如果輸出的函數(shù)值在區(qū)間內,那么輸入的實數(shù)x的取值范圍是(  )

A.(-∞,-2] B.[-2,-1] C.[-1,2] D.[2,+∞)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第七章 立體幾何(解析版) 題型:選擇題

(2014·宜昌模擬)一個直棱柱被一個平面截去一部分后所剩幾何體的三視圖如圖所示,則該幾何體的體積為( )

A.9 B.10 C.11 D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導數(shù)(解析版) 題型:選擇題

小王從甲地到乙地往返的時速分別為a和b(a<b),其全程的平均時速為v,則( )

A.a<v< B.v=

C.<v< D.v=

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導數(shù)(解析版) 題型:選擇題

“φ=π”是“曲線y=sin(2x+φ)過坐標原點”的( )

A.充分而不必要條件

B.必要而不充分條件

C.充分必要條件

D.既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 解析幾何(解析版) 題型:填空題

l1,l2是分別經過A(1,1),B(0,-1)兩點的兩條平行直線,當l1,l2間的距離最大時,直線l1的方程是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 解析幾何(解析版) 題型:選擇題

若雙曲線的離心率為,則其漸近線方程為(  )

A.y=±2x B.y=±x

C.y=±x D.y=±x

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 立體幾何(解析版) 題型:選擇題

在正三棱柱ABC—A1B1C1中,D是AC的中點,AB1⊥BC1,則平面DBC1與平面CBC1所成的角為(  )

A.30° B.45° C.60° D.90°

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:選擇題

已知向量a、b的夾角為120°,且|a|=|b|=4,那么b·(2a+b)的值為(  )

A.48 B.32 C.1 D.0

 

查看答案和解析>>

同步練習冊答案