【題目】關(guān)于函數(shù),.有下列命題:

①對,恒有成立.

,使得成立.

③“若,則有.”的否命題.

④“若,則有.”的逆否命題.

其中,真命題有_____________.(只需填序號)

【答案】①②③

【解析】

設(shè),可判定①是真命題;令,得到,可判定②是真命題;根據(jù)二次函數(shù)的性質(zhì)和四種命題的等價關(guān)系,可判定③是真命題,④是假命題.

由題意,設(shè),所以,即對,恒有成立,所以①是真命題;

,可得,此時,即,使得成立,所以②是真命題;

因為當時,函數(shù)單調(diào)遞減,所以,

時,函數(shù)單調(diào)遞減,所以

所以命題“若,則有”是真命題,所以④是假命題;

又由命題“若,則有”與命題“若,則有”互為逆否關(guān)系,所以命題“若,則有”是真命題,所以③是真命題,

綜上可得,①②③是真命題.

故答案為:①②③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的普通方程為,曲線參數(shù)方程為為參數(shù));以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程為,.

(1)求的參數(shù)方程和的直角坐標方程;

(2)已知上參數(shù)對應(yīng)的點,上的點,求中點到直線的距離取得最小值時,點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個棱長為的正方體形狀的鐵盒內(nèi)放置一個正四面體,且能使該正四面體在鐵盒內(nèi)任意轉(zhuǎn)動,則該正四面體的體積的最大值是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過多年的努力,炎陵黃桃在國內(nèi)乃至國際上逐漸打開了銷路,成為炎陵部分農(nóng)民脫貧致富的好產(chǎn)品.為了更好地銷售,現(xiàn)從某村的黃桃樹上隨機摘下了100個黃桃進行測重,其質(zhì)量分布在區(qū)間內(nèi)(單位:克),統(tǒng)計質(zhì)量的數(shù)據(jù)作出其頻率分布直方圖如圖所示:

(1)按分層抽樣的方法從質(zhì)量落在,的黃桃中隨機抽取5個,再從這5個黃桃中隨機抽2個,求這2個黃桃質(zhì)量至少有一個不小于400克的概率;

(2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村的黃桃樹上大約還有100000個黃桃待出售,某電商提出兩種收購方案:

A.所有黃桃均以20/千克收購;

B.低于350克的黃桃以5/個收購,高于或等于350克的以9/個收購.

請你通過計算為該村選擇收益最好的方案.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司培訓(xùn)員工某項技能,培訓(xùn)有如下兩種方式:

方式一:周一到周五每天培訓(xùn)1小時,周日測試

方式二:周六一天培訓(xùn)4小時,周日測試

公司有多個班組,每個班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測試達標的人數(shù)如表:

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

用方式一與方式二進行培訓(xùn),分別估計員工受訓(xùn)的平均時間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?

在甲乙兩組中,從第三周培訓(xùn)后達標的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求這2人中至少有1人來自甲組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是某地一家超市在2018年一月份某一周內(nèi)周2到周6的時間與每天獲得的利潤(單位:萬元)的有關(guān)數(shù)據(jù).

星期

星期2

星期3

星期4

星期5

星期6

利潤

2

3

5

6

9

1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程;

2)估計星期日獲得的利潤為多少萬元.

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是圓上的動點,點軸上的投影,且.

1)當在圓上運動時,求點的軌跡的方程;

2)求過點(1,0),傾斜角為的直線被所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=2sinxxcosxxf′x)為fx)的導(dǎo)數(shù).

1)證明:f′x)在區(qū)間(0,π)存在唯一零點;

2)若x[0π]時,fxax,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面,.

(Ⅰ)求證:平面;

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)若二面角的余弦值為,求線段的長.

查看答案和解析>>

同步練習(xí)冊答案