4.已知某回歸分析中,模型A的殘差圖的帶狀區(qū)域?qū)挾缺饶P虰的殘差圖的帶狀區(qū)域?qū)挾日,則在該回歸分析中擬合精度較高的模型是模型A.

分析 由殘差和擬合精確度的關(guān)系可得.

解答 解:∵模型A的殘差圖的帶狀區(qū)域?qū)挾缺饶P虰的殘差圖的帶狀區(qū)域?qū)挾日?br />∴模型A的離散程度不模型B小,
故模型A的擬合精度較高
故答案為:模型A

點(diǎn)評(píng) 本題考查回歸分析,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若f(x)=1-2a-2acosx-2sin2x恒大于0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.拋物線y2=-8x的準(zhǔn)線與雙曲線$C:\frac{x^2}{8}-\frac{y^2}{4}=1$的兩條漸近線所圍成的三角形面積為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知隨機(jī)變量ξ服從正態(tài)分布N(m,σ2),若P(ξ≤-3)=P(ξ≥4),則m=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線x-$\sqrt{3}$y+1=0的傾斜角為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知i2=-1,復(fù)數(shù)z=$\frac{1-i}{1+i}$,則|z|=(  )
A.1B.$\sqrt{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知2c=3b,sinA=2sinB,則$\frac{cosA}{cosB}$的值為-$\frac{2}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=sin(ωx+$\frac{π}{6}$)(ω>0)的最小正周期為π,將其圖象向右平移$\frac{π}{3}$個(gè)單位后所得圖象對(duì)應(yīng)的解析式為( 。
A.y=sin(2x-$\frac{π}{6}$)B.y=-cos2xC.y=sin$\frac{x}{2}$D.y=cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.圓(x-2)2+(y+2)2=1上的動(dòng)點(diǎn)到直線3x-4y+1=0的距離的最大值為4,最小值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案