【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時,f(x)= (1﹣x).
(1)求f(0),f(1);
(2)求函數(shù)f(x)的解析式.
【答案】
(1)解:f(x)是定義在R上的偶函數(shù),且x≤0時,f(x)= (1﹣x).
f(0)=0,
f(1)=f(﹣1)= (1+1)=﹣1
(2)解:f(x)是定義在R上的偶函數(shù),且x≤0時,f(x)= (1﹣x).
x>0時,f(x)=f(﹣x)=l 1+x).
可得:f(x)=
【解析】(1)利用函數(shù)的奇偶性的性質(zhì),求解函數(shù)值即可.(2)利用函數(shù)的奇偶性以及已知條件真假求解函數(shù)的解析式即可.
【考點精析】認(rèn)真審題,首先需要了解函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為參數(shù)).以O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程是,射線與圓C的交點為O、P,與直線的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為自然對數(shù)的底數(shù).
(1)求曲線在處的切線方程;
(2)關(guān)于的不等式在上恒成立,求實數(shù)的值;
(3)關(guān)于的方程有兩個實根,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運貨卡車以每小時千米的速度勻速行駛千米().假設(shè)汽油的價格是每升元,而汽車每小時耗油升,司機的工資是每小時元.
(1)求這次行車總費用關(guān)于的表達(dá)式;
(2)當(dāng)為何值時,這次行車的總費用最低?并求出最低費用的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)國務(wù)院批復(fù)同意,重慶成功入圍國家中心城市,某校學(xué)生社團(tuán)針對“重慶的發(fā)展環(huán)境”對20名學(xué)生進(jìn)行問卷調(diào)查打分(滿分100分),得到如圖所示莖葉圖:
(Ⅰ)計算女生打分的平均分,并用莖葉圖的數(shù)字特征評價男生、女生打分誰更分散;
(Ⅱ)如圖按照打分區(qū)間、、、、繪制的直方圖中,求最高矩形的高;
(Ⅲ)從打分在70分以下(不含70分)的同學(xué)中抽取3人,求有女生被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合.如果對于的每一個含有個元素的子集, 中必有4個元素的和等于,稱正整數(shù)為集合的一個“相關(guān)數(shù)”.
(Ⅰ)當(dāng)時,判斷5和6是否為集合的“相關(guān)數(shù)”,說明理由;
(Ⅱ)若為集合的“相關(guān)數(shù)”,證明: ;
(Ⅲ)給定正整數(shù).求集合的“相關(guān)數(shù)” 的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com