17.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),f′(x)為其導(dǎo)函數(shù),當(dāng)x>0時(shí),f(x)+x•f′(x)>0,且f(1)=0,則不等式x•f(x)>0的解集為(-1,0)∪(1,+∞).

分析 由題意可得函數(shù)g(x)=xf(x)是R上的奇函數(shù),畫出函數(shù)g(x)=xf(x)的單調(diào)性的示意圖,數(shù)形結(jié)合求得不等式x•f(x)>0的解集.

解答 解:∵(x•f(x))′=f(x)+x•f′(x)>0,
故函數(shù)g(x)=xf(x)在(0,+∞)上單調(diào)遞增.
再根據(jù)函數(shù)f(x)是定義在R上的偶函數(shù),
可得函數(shù)g(x)=xf(x)是R上的奇函數(shù),
故函數(shù)g(x)=xf(x)是R上的奇函數(shù),
故函數(shù)g(x)=xf(x)在(-∞,0)上單調(diào)遞增.
∵f(1)=0,∴f(-1)=0,
故函數(shù)y=xf(x)的單調(diào)性的示意圖,如圖所示:
由不等式x•f(x)>0,
可得 x與f(x)同時(shí)為正數(shù)或同時(shí)為負(fù)數(shù),∴x>1,或-1<x<0,
故不等式x•f(x)>0的解集為:(-1,0)∪(1,+∞),
故答案為:(-1,0)∪(1,+∞).

點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性的性質(zhì),函數(shù)的導(dǎo)數(shù)與單調(diào)性的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知定義域?yàn)镽的函數(shù)f(x)=$\frac{{-{2^x}+n}}{{{2^{x+1}}+m}}$是奇函數(shù).
①求m、n的值;
②若對(duì)任意的t∈(1,2),不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.?dāng)?shù)列{an}滿足:an+1=3an+2,且a1=1,則其通項(xiàng)公式an=(  )
A.3n-1B.2×3n-1C.2×3n-1-1D.3n-1-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知α為銳角,且cos(α+$\frac{π}{12}}$)=$\frac{3}{5}$,則sin2α的值為(  )
A.$\frac{{24-7\sqrt{3}}}{50}$B.$\frac{{24+7\sqrt{3}}}{50}$C.$\frac{{24\sqrt{3}-7}}{50}$D.$\frac{{24\sqrt{3}+7}}{50}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.集合A={0,1,2,3,4},B={x|(x+2)(x-1)≤0},則A∩B=( 。
A.{0,1,2,3,4}B.{0,1,2,3}C.{0,1,2}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且bcosC+(2a+c)cosB=0.
(1)求角B的度數(shù);
(2)若b=3,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)y=x4-4x+3在區(qū)間[-2,3]上的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個(gè)三角形的三邊成等比數(shù)列,則公比q的范圍是( 。
A.q>$\frac{\sqrt{5}+1}{2}$B.q<$\frac{\sqrt{5}-1}{2}$C.$\frac{\sqrt{5}-1}{2}$<q<$\frac{\sqrt{5}+1}{2}$D.q<$\frac{\sqrt{5}-1}{2}$或q>$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列四個(gè)數(shù)中數(shù)值最大的是( 。
A.1111(2)B.16C.23(7)D.30(6)

查看答案和解析>>

同步練習(xí)冊(cè)答案