1.函數(shù)y=$\sqrt{x-5}+\frac{1}{2-x}$的定義域為[5,+∞).

分析 由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不為0聯(lián)立不等式組求解.

解答 解:由$\left\{\begin{array}{l}{x-5≥0}\\{2-x≠0}\end{array}\right.$,解得x≥5.
∴函數(shù)y=$\sqrt{x-5}+\frac{1}{2-x}$的定義域為[5,+∞).
故答案為:[5,+∞).

點評 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若命題p:?x∈R,使x2+ax+1<0,則¬p:?x∈R,使x2+ax+1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,且向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$,求|3$\overrightarrow{a}$-2$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.集合A={x||x+1|<4},B={x|(x-1)(x-2a)<0}.
(1)求A、B;
(2)若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知三個球的半徑R1、R2、R3滿足R1+2R2=3R3,則它們的表面積S1、S2、S3滿足的等量關(guān)系是( 。
A.S1+2S2=3S3B.$\sqrt{{S}_{1}}$+$\sqrt{2{S}_{2}}$=$\sqrt{3{S}_{3}}$C.$\sqrt{{S}_{1}}$+2$\sqrt{{S}_{2}}$=3$\sqrt{{S}_{3}}$D.$\sqrt{{S}_{1}}$+4$\sqrt{{S}_{2}}$=9$\sqrt{{S}_{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在圓內(nèi)接四邊形ABCD中,AC與BD交于點E,過點A作圓的切線交CB的延長線于點F,若AB=AD,AD∥FC,AF=18,BC=15,求AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,河的一側(cè)是以O(shè)為圓形,半徑為80$\sqrt{3}$米的扇形區(qū)域OCD,河的另一側(cè)有一建筑物AB垂直于水平面,假設(shè)扇形OCD與點B處于同一水平面,記OB與$\widehat{CD}$的交點為E,若在點C,點O和點E處看到點A的仰角分別為45°,30°和60°,則∠CBO的余弦值為$\frac{4\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知f(x+1)=x2-3x+2,則f(2)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將3個相同的紅色玩偶和3個相同的黃色玩偶在展柜中自左向右排成一排,如果滿足:從任何一個位置(含這個位置)開始向右數(shù),數(shù)到最末一個玩偶,紅色玩偶的個數(shù)大于或等于黃色玩偶的個數(shù),就稱這種排列為“有效排列”,則出現(xiàn)“有效排列”的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{10}$

查看答案和解析>>

同步練習(xí)冊答案