平面內動點P(x,y)與兩定點A(-2, 0), B(2,0)連線的斜率之積等于,若點P的軌跡為曲線E,過點 直線 交曲線E于M,N兩點.
(Ⅰ)求曲線E的方程,并證明:MAN是一定值;
(Ⅱ)若四邊形AMBN的面積為S,求S的最大值
(Ⅰ)(Ⅱ)16
【解析】
試題分析:(Ⅰ)設出P點坐標,求出AP,BP的斜率,根據(jù)條件直線AP、BP斜率之積為列出關于P點坐標的方程,化簡即得曲線E方程,設出M、N點坐標及直線方程,將直線方程代入曲線E的方程化為關于的一元二次方程,利用根與系數(shù)關系及設而不求思想,利用向量法求出與的夾角,即證明了MAN是一定值;(Ⅱ)利用設而不求思想,將四邊形ANBN的面積用參數(shù)表示出來,再利用函數(shù)求最值的方法,求出其面積的最大值.
試題解析:(Ⅰ)設動點P坐標為,當時,由條件得:
,化簡得
曲線E的方程為,, 4分
(說明:不寫的扣1分)
由題可設直線的方程為,聯(lián)立方程組可得
,化簡得:
設,則, (6分)
又,則
,
所以,所以的大小為定值 (8分)
(Ⅱ)
令設
在上單調遞減.
由,得K=0,此時有最大值16 (12分)
考點:求曲線方程,直線與橢圓的位置,與圓錐曲線有關的最值問題和定制問題,推理論證能力,運算求解能力
科目:高中數(shù)學 來源:2013-2014學年河南省鄭州市高三第二次模擬考試理科數(shù)學試卷(解析版) 題型:選擇題
如圖,是雙曲線的左、右焦點,過的直線與雙曲線分別交于點,若為等邊三角形,則的面積為
A.8 B. C. D.16
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年河南省畢業(yè)班高考適應性模擬練習理科數(shù)學試卷(解析版) 題型:選擇題
函數(shù) 的定義域是( )
A.(-,1) B.(-,+∞) C.(-,) D.(-∞,- )
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年河南省原名校高三高考仿真模擬統(tǒng)一考試理科數(shù)學試卷(解析版) 題型:選擇題
設變量x,y滿足約束條件 ,則目標函數(shù)z=的最大值為
A.11 B.10 C.9 . D.13
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年河南省原名校高三高考仿真模擬統(tǒng)一考試理科數(shù)學試卷(解析版) 題型:選擇題
已知集合,則
A B.{1} C.[0,1] D.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年河南省原名校高三高考仿真模擬統(tǒng)一考試文科數(shù)學試卷(解析版) 題型:填空題
已知函數(shù) ,若存在 ,使 ,則實數(shù)m的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年河南省原名校高三高考仿真模擬統(tǒng)一考試文科數(shù)學試卷(解析版) 題型:選擇題
下列命題正確的個數(shù)是
①命題“ ”的否定是“ ”:
②函數(shù) 的最小正周期為“ ”是“a=1”的必要不充分條件;
③ 在 上恒成立在 上恒成立;
④“平面向量 與 的夾角是鈍角”的充分必要條件是“ ”
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年河南中原名校高三下學期第二次聯(lián)考理科數(shù)學試卷(解析版) 題型:填空題
已知橢圓分別是橢圓的上、下頂點,B是左頂點,F(xiàn)為左焦點,直線AB與FC相交于點D,則的余弦值是
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年河北省邯鄲市高三第二次模擬考試文科數(shù)學試卷(解析版) 題型:解答題
已知,為圓的直徑,為垂直的一條弦,垂足為,弦交于.
(1)求證:、、、四點共圓;
(2)若,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com