【題目】下列命題中,真命題是( 。
A.?x0∈R,
B.?x∈R,
C.“a>1,b>1”是“ab>1”的充要條件
D.設(shè) , 為向量,則“|?|=||||”是“∥”的充要條件
【答案】D
【解析】對(duì)于A,x0∈R,ex0>0,所以A不正確;
對(duì)于B,x∈R,2x>x2 , 當(dāng)x=2時(shí),不等式不成立,所以B不正確;
對(duì)于C,“a>1,b>1”是“ab>1”的充分不必要條件,所以C不正確;
對(duì)于D,設(shè) , 為向量,則“||=|||||”說(shuō)明兩個(gè)向量的夾角為0°或180°,所以||=||||”是“∥”的充要條件,所以D正確.
故選:D.
【考點(diǎn)精析】關(guān)于本題考查的全稱命題和特稱命題,需要了解全稱命題:,,它的否定:,;全稱命題的否定是特稱命題;特稱命題:,,它的否定:,;特稱命題的否定是全稱命題才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)的和為Sn,且對(duì)任意的m,n∈N*,
都有(Sm+n+S1)2=4a2ma2n.
(1)求的值;
(2)求證:{an}為等比數(shù)列;
(3)已知數(shù)列{cn},{dn}滿足|cn|=|dn|=an,p(p≥3)是給定的正整數(shù),數(shù)列{cn},{dn}的前p項(xiàng)的和分別為Tp,Rp,且Tp=Rp,求證:對(duì)任意正整數(shù)k(1≤k≤p),ck=dk.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)y=f(x),若在其定義域內(nèi)存在x0 , 使得x0f(x0)=1成立,則稱x0為函數(shù)f(x)的“反比點(diǎn)”.下列函數(shù)中具有“反比點(diǎn)”的是
①f(x)=﹣2x+2; ②f(x)=sinx,x∈[0,2π];
③f(x)=x+ , x∈(0,+∞);④f(x)=ex; ⑤f(x)=﹣2lnx.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)(0,4),斜率為﹣1的直線與拋物線y2=2px(p>0)交于兩點(diǎn)A、B,且弦|AB|的長(zhǎng)度為4 .
(1)求p的值;
(2)求證:OA⊥OB(O為原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)擬對(duì)某商品進(jìn)行促銷,現(xiàn)有兩種方案供選擇,每種促銷方案都需分兩個(gè)月實(shí)施,且每種方案中第一個(gè)月與第二個(gè)月的銷售相互獨(dú)立.根據(jù)以往促銷的統(tǒng)計(jì)數(shù)據(jù),若實(shí)施方案1,預(yù)計(jì)第一個(gè)月的銷量是促銷前的1.2倍和1.5倍的概率分別是0.6和0.4,第二個(gè)月的銷量是第一個(gè)月的1.4倍和1.6倍的概率都是0.5;若實(shí)施方案2,預(yù)計(jì)第一個(gè)月的銷量是促銷前的1.4倍和1.5倍的概率分別是0.7和0.3,第二個(gè)月的銷量是第一個(gè)月的1.2倍和1.6倍的概率分別是0.6和0.4.令表示實(shí)施方案的第二個(gè)月的銷量是促銷前銷量的倍數(shù).
(Ⅰ)求, 的分布列;
(Ⅱ)不管實(shí)施哪種方案, 與第二個(gè)月的利潤(rùn)之間的關(guān)系如下表,試比較哪種方案第二個(gè)月的利潤(rùn)更大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將圓為參數(shù))上的每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的倍,得到曲線
(1)求出的普通方程;
(2)設(shè)直線: 與的交點(diǎn)為, ,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】霧霾天氣對(duì)城市環(huán)境造成很大影響,按照國(guó)家環(huán)保部發(fā)布的標(biāo)準(zhǔn):居民區(qū)的PM2.5(大氣中直徑小于或等于2.5微米的顆粒物)年平均濃度不得超過(guò)35微克/立方米.某市環(huán)保部門加強(qiáng)了對(duì)空氣質(zhì)量的監(jiān)測(cè),抽取某居民區(qū)監(jiān)測(cè)點(diǎn)的20天PM2.5的24小時(shí)平均濃度的監(jiān)測(cè)數(shù)據(jù),制成莖葉圖,如圖:
(Ⅰ)完成如下頻率分布表,并在所給的坐標(biāo)系中畫出的頻率分布直方圖;
(Ⅱ)從樣本中PM2.5的24小時(shí)平均濃度超過(guò)50微克/立方米的天數(shù)中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過(guò)75微克/立方米的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的方程為: =1(a>0),其焦點(diǎn)在x軸上,離心率e= .
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)P(x0 , y0)滿足 ,其中O為坐標(biāo)原點(diǎn),M,N是橢圓C上的點(diǎn),直線OM與ON的斜率之積為﹣ ,求證:x02+2y02為定值.
(3)在(2)的條件下,問(wèn):是否存在兩個(gè)定點(diǎn)A,B,使得|PA|+|PB|為定值?若存在,給出證明;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com