【題目】過點(0,4),斜率為﹣1的直線與拋物線y2=2px(p>0)交于兩點A、B,且弦|AB|的長度為4 .
(1)求p的值;
(2)求證:OA⊥OB(O為原點).
【答案】解:(1)直線方程為y=﹣x+4,聯(lián)立方程消去y得,x2﹣2(p+4)x+16=0.
設(shè)A(x1 , y1),B(x2 , y2),得x1+x2=2(p+4),x1x2=16,△=4(p+2)2﹣64>0.
所以|AB|=|x1﹣x2|==4,所以p=2.
(2)證明:由(1)知,x1+x2=2(p+4)=12,x1x2=16,
∴y1y2=(﹣x1+4)(﹣x2+4)=﹣8p=﹣16
∴x1x2+y1y2=0,∴OA⊥OB.
【解析】(1)聯(lián)立直線與拋物線方程,利用韋達定理,計算弦|AB|的長度,即可求p的值;
(2)證明x1x2+y1y2=0,即可得到OA⊥OB.
科目:高中數(shù)學 來源: 題型:
【題目】空氣質(zhì)量主要受污染物排放量及大氣擴散等因素的影響,某市環(huán)保監(jiān)測站2014年10月連續(xù)10天(從左到右對應(yīng)1號至10號)采集該市某地平均風速及空氣中氧化物的日均濃度數(shù)據(jù),制成散點圖如圖所示.
(Ⅰ)同學甲從這10天中隨機抽取連續(xù)5天的一組數(shù)據(jù),計算回歸直線方程.試求連續(xù)5天的一組數(shù)據(jù)中恰好同時包含氧化物日均濃度最大與最小值的概率;
(Ⅱ)現(xiàn)有30名學生,每人任取5天數(shù)據(jù),對應(yīng)計算出30個不同的回歸直線方程.已知30組數(shù)據(jù)中有包含氧化物日均濃度最值的有14組.現(xiàn)采用這30個回歸方程對某一天平均風速下的氧化物日均濃度進行預(yù)測,若預(yù)測值與實測值差的絕對值小于2,則稱之為“擬合效果好”,否則為“擬合效果不好”.根據(jù)以上信息完成下列2×2聯(lián)表,并分析是否有95%以上的把握說擬合效果與選取數(shù)據(jù)是否包含氧化物日均濃度最值有關(guān).
預(yù)測效果好 | 擬合效果不好 | 合計 | |
數(shù)據(jù)有包含最值 | 5 | ||
數(shù)據(jù)無包含最值 | 4 | ||
合計 |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點,求證:
(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐ABCD﹣PGFE中,底面ABCD是直角梯形,側(cè)棱垂直于底面,AB∥DC,∠ABC=45°,DC=1,AB=2,PA=1.
(Ⅰ)求PD與BC所成角的大;
(Ⅱ)求證:BC⊥平面PAC;
(Ⅲ)求二面角A﹣PC﹣D的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】研究人員隨機調(diào)查統(tǒng)計了某地1000名“上班族”每天在工作之余使用手機上網(wǎng)的時間,并將其繪制為如圖所示的頻率分布直方圖.若同一組數(shù)據(jù)用該區(qū)間的中點值作代表,則可估計該地“上班族”每天在工作之余使用手機上網(wǎng)的平均時間是( )
A.1.78小時
B.2.24小時
C.3.56小時
D.4.32小時
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中, , , 分別為棱的中點.
(1)在平面內(nèi)過點作平面交于點,并寫出作圖步驟,但不要求證明.
(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,真命題是( 。
A.?x0∈R,
B.?x∈R,
C.“a>1,b>1”是“ab>1”的充要條件
D.設(shè) , 為向量,則“|?|=||||”是“∥”的充要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(1)若在點處的切線與直線垂直,求實數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)討論函數(shù)在區(qū)間上零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC中,角A,B,C的對邊分別為a,b,c,且cosC= .
(1)求角B的大小;
(2)若BD為AC邊上的中線,cosA= ,BD= ,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com