已知函數(shù)f(x)在x0處的導數(shù)為1,則
lim
△x→0
f(x0+△x)-f(x0)
△x
等于( 。
A、2B、-2C、1D、-1
分析:由題設條件,根據(jù)導數(shù)的定義知,
f(x0+△x)-f(x0)
△x
=f′(x0),其值易得,選出正確選項即可
解答:解:由題意,f′(x0),
又函數(shù)f(x)在x0處的導數(shù)為1
f(x0+△x)-f(x0)
△x
=1
故選C
點評:本題考查極限及其運算以及導數(shù)的定義,解題的關鍵是根據(jù)導數(shù)的定義得出
f(x0+△x)-f(x0)
△x
與函數(shù)f(x)在x0處的導數(shù)的對應關系,求出值
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-ln(x+a).(a是常數(shù))
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當y=f(x)在x=1處取得極值時,若關于x的方程f(x)+2x=x2+b在[0.5,2]上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍;
(Ⅲ)求證:當n≥2,n∈N+(1+
1
22
)(1+
1
32
)…(1+
1
n2
)<e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)在x=1處的導數(shù)為3,f(x)的解析式可能為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga
1-mxx-1
是奇函數(shù).(a>0,且a≠1)
(1)求m的值;
(2)判斷f(x)在區(qū)間(1,+∞)上的單調(diào)性并加以證明.
(3)當a>1,x∈(r,a-2)時,f(x)的值域是(1,+∞),求a與r的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x∈(-∞,0]時,f(x)=e-x-ex2+a,則函數(shù)f(x)在x=1處的切線方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函數(shù)f(x)在R上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)是否存在實數(shù)a,使不等式f(x)≥2x-3對一切實數(shù)x∈R恒成立?若存在,求出a的取值范圍,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案