【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自2019年1月1日起,個(gè)人所得稅起征點(diǎn)和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:
個(gè)人所得稅稅率表(調(diào)整前) | 個(gè)人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) | 級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) |
1 | 不超過(guò)1500元部分 | 3 | 1 | 不超過(guò)3000元部分 | 3 |
2 | 超過(guò)1500元至4500元的部分 | 10 | 2 | 超過(guò)3000元至12000元的部分 | 10 |
3 | 超過(guò)4500元至9000元的部分 | 20 | 3 | 超過(guò)12000元至25000元的部分 | 20 |
... | ... | ... | ... | ... | ... |
(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應(yīng)納的稅,試寫(xiě)出調(diào)整前后關(guān)于的函數(shù)表達(dá)式;
(2)某稅務(wù)部門在小紅所在公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入(元) | ||||||
人數(shù) | 30 | 40 | 10 | 8 | 7 | 5 |
①先從收入在及的人群中按分層抽樣抽取7人,再?gòu)闹羞x4人作為新納稅法知識(shí)宣講員,用表示抽到作為宣講員的收入在元的人數(shù),表示抽到作為宣講員的收入在元的人數(shù),隨機(jī)變量,求的分布列與數(shù)學(xué)期望;
②小紅該月的工資、薪金等稅前收入為7500元時(shí),請(qǐng)你幫小紅算一下調(diào)整后小紅的實(shí)際收入比調(diào)整前增加了多少?
【答案】(1);(2)①詳見(jiàn)解析,②220元.
【解析】
(1)根據(jù)題意可列出納稅y與總收入x的關(guān)系式。
(2)根據(jù)分層抽樣,求得及各自抽取人數(shù)。從中抽取4人,所以z的可能有三種。分別求這三種情況下的概率,結(jié)合分布列與數(shù)學(xué)期望的求法可得解。
根據(jù)調(diào)整前后納稅計(jì)算公式,分別求得兩種情況下的納稅額,求其差即可求得增加額。
解:(1)調(diào)整前關(guān)于的表達(dá)式為,
調(diào)整后關(guān)于的表達(dá)式為.
(2)①由頻數(shù)分布表可知從及的人群中抽取7人,其中中占3人,的人中占4人,
再?gòu)倪@7人中選4人,所以的取值可能為0,2,4,
,
,
,
所以其分布列為
0 | 2 | 4 | |
所以.
②由于小紅的工資、薪金等稅前收入為7500元,
按調(diào)整起征點(diǎn)前應(yīng)納個(gè)稅為元;
按調(diào)整起征點(diǎn)后應(yīng)納個(gè)稅為元,
由此可知,調(diào)整起征點(diǎn)后應(yīng)納個(gè)稅少交220元,
即個(gè)人的實(shí)際收入增加了220元,
所以小紅的實(shí)際收入增加了220元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱柱中,四邊形是長(zhǎng)方形,,,,,連接.
證明:平面平面;
若,,,是線段上的一點(diǎn),且,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的極值點(diǎn)個(gè)數(shù);
(2)若,證明 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市教學(xué)研究室為了對(duì)今后所出試題的難度有更好的把握,提高命題質(zhì)量,對(duì)該市高三理科數(shù)學(xué)試卷的得分情況進(jìn)行了調(diào)研.從全市參加考試的理科考生中隨機(jī)抽取了100名考生的數(shù)學(xué)成績(jī)(滿分150分),將數(shù)據(jù)分成9組:,,,,,,,,,并整理得到如圖所示的頻率分布直方圖.用統(tǒng)計(jì)的方法得到樣本標(biāo)準(zhǔn)差,以頻率值作為概率估計(jì)值.
(Ⅰ)根據(jù)頻率分布直方圖,求抽取的100名理科考生數(shù)學(xué)成績(jī)的平均分及眾數(shù);
(Ⅱ)用頻率估計(jì)概率,從該市所有高三理科考生的數(shù)學(xué)成績(jī)中隨機(jī)抽取3個(gè),記理科數(shù)學(xué)成績(jī)位于區(qū)間內(nèi)的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望;
(Ⅲ)從該市高三理科數(shù)學(xué)考試成績(jī)中任意抽取一份,記其成績(jī)?yōu)?/span>,依據(jù)以下不等式評(píng)判(表示對(duì)應(yīng)事件的概率):
①,②,
③,其中.
評(píng)判規(guī)則:若至少滿足以上兩個(gè)不等式,則給予這套試卷好評(píng),否則差評(píng).試問(wèn):這套試卷得到好評(píng)還是差評(píng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,底面四邊形為直角梯形,,,為線段上一點(diǎn).
(1)若,則在線段上是否存在點(diǎn),使得平面?若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由
(2)己知,若異面直線與成角,二而角的余弦值為,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD的底面ABCD為正方形,,E,F分別是棱PC,AB的中點(diǎn).
(1)求證:平面PAD;
(2)若,求直線EF與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),直線上有兩點(diǎn)E,F使,點(diǎn)P在線段的延長(zhǎng)線上,且.
(1)若,求點(diǎn)P的軌跡方程;
(2)若在點(diǎn)P的軌跡上存在兩點(diǎn)M,N,設(shè),的夾角為.
①若,求證:直線過(guò)定點(diǎn),并求定點(diǎn)坐標(biāo);
②若為銳角,求直線與x軸交點(diǎn)橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱臺(tái)中,底面,四邊形為菱形,,.
(1)若為中點(diǎn),求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將方格表的每個(gè)方格任意填入或,然后允許進(jìn)行如下操作:每次任意選擇一行(或列),將這一行(或列)中的數(shù)全部變號(hào).若無(wú)論開(kāi)始時(shí)方格表的數(shù)怎樣填,總能經(jīng)過(guò)不超過(guò)次操作,使得方格表每一行中所有數(shù)的和、每一列中所有數(shù)的和均非負(fù).試確定的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com