若A(2,-2),B(4,-1),C(x,-3)三點(diǎn)共線,則x的值為
 
考點(diǎn):平行向量與共線向量,三點(diǎn)共線
專題:平面向量及應(yīng)用
分析:三點(diǎn)共線等價(jià)于以三點(diǎn)為起點(diǎn)終點(diǎn)的兩個向量共線,利用向量坐標(biāo)公式求出兩個向量的坐標(biāo),利用向量共線的充要條件列出方程求出x.
解答: 解:三點(diǎn)A(2,-2),B(4,-1),C(x,-3)共線⇒
AC
AB
,
由題意可得:
AC
=(x-2,-1),
AB
=(2,1),
所以2×(-1)=1×(x+1),
解得x=-3.
故答案為:-1.
點(diǎn)評:本題考查向量坐標(biāo)的求法、考查向量共線的坐標(biāo)形式的充要條件:坐標(biāo)交叉相乘相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知F1,F(xiàn)2是橢圓
x2
36
+
y2
24
=1
的兩個焦點(diǎn),P為橢圓上一點(diǎn),∠F1PF2=60°求:
(1)△PF1F2的面積;
(2)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>1,0≤φ≤π)是R上的偶函數(shù),其圖象關(guān)于M(
4
,0)對稱,且在區(qū)間[0,
π
2
]上是單調(diào)函數(shù).
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)求函數(shù)y=
-f(x)-
1
2
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
(3-a)x+1,x<1
ax(a>0且a≠1),x≥1
,滿足對任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
>0成立,那么a的取值范圍是( 。
A、(1,3)
B、(1,2]
C、[2,3)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)是定義在R上的函數(shù),并且對任意的實(shí)數(shù)x,y都滿足f(x+y)=f(x)•f(y).當(dāng)x>0時,f(x)>1,f(1)=2.
(1)求f(0)和f(3)的值;
(2)證明f(x)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(λ+2,λ2-
3
cos2α),
b
=(m,
m
2
+sinαcosα)其中λ,m,α為實(shí)數(shù).
(Ⅰ)若α=
π
12
,且
a
b
,求m的取值范圍;
(Ⅱ)若
a
=2
b
,求
λ
m
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知斜率為1的直線l,過橢圓
x2
3
+
y2
2
=1的右焦點(diǎn)F2,交橢圓于A,B兩點(diǎn),求弦長AB和△ABF1的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是菱形,且PB=PD.
(1)求證:BD⊥PC;
(2)若平面PBC與平面PAD的交線為l,求證:BC∥l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
sinπx,x∈[0,1]
log2013x,x∈(1,+∞)
,若滿足f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案