【題目】已知函數(shù),.
(1)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若對(duì)任意的、,恒成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)在上的值城為區(qū)間,是否存在常數(shù),使得區(qū)間的長(zhǎng)度為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.(注:區(qū)間的長(zhǎng)度為).
【答案】(1);(2);(3)存在常數(shù)或滿足題意.
【解析】
(1)求出函數(shù)的對(duì)稱(chēng)軸,得到函數(shù)的單調(diào)性,建立關(guān)于的不等式組,解出即可;
(2)依題意,函數(shù)在上的最大值小于等于函數(shù)在上的最小值,此時(shí)可以分離變量,也可以直接求解;
(3)通過(guò)討論的范圍,結(jié)合函數(shù)的單調(diào)性以及、的值,得到關(guān)于的方程,解出即可.
(1)由題意得,函數(shù)的對(duì)稱(chēng)軸為,
故函數(shù)在區(qū)間上為增函數(shù),
函數(shù)在區(qū)間上存在零點(diǎn),
,即,解得,故實(shí)數(shù)的取值范圍為;
(2)依題意,函數(shù)在上的最大值小于等于函數(shù)在上的最小值,
當(dāng)時(shí),,
易知,函數(shù)在上的最大值為.
法一:當(dāng)時(shí),函數(shù)在上為增函數(shù),
則,符合題意;
當(dāng)時(shí),函數(shù)在上為減函數(shù),
則,解得.
綜上,實(shí)數(shù)的取值范圍為;
法二:依題意,對(duì)任意都成立,
,,則,
當(dāng)時(shí),則有,顯然成立;
當(dāng)時(shí),則對(duì)任意都成立,
則函數(shù)為增函數(shù),故,即.
綜上,實(shí)數(shù)的取值范圍為;
(3)依題意,解得.
①當(dāng)時(shí),當(dāng)時(shí),,,即,,即,
解得;
②當(dāng)時(shí),當(dāng)時(shí),,,
,,解得;
③當(dāng)時(shí),當(dāng)時(shí),,,
,,解得,不符合,舍去;
綜上,存在常數(shù)或滿足題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,右焦點(diǎn)F是拋物線:的焦點(diǎn),點(diǎn)在拋物線上
求橢圓的方程;
已知斜率為k的直線l交橢圓于A,B兩點(diǎn),,直線AM與BM的斜率乘積為,若在橢圓上存在點(diǎn)N,使,求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系.已知點(diǎn)軌跡的參數(shù)方程為(,為參數(shù)),點(diǎn)在曲線上.
(1)求點(diǎn)軌跡的普通方程和曲線的直角坐標(biāo)方程;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),若,則稱(chēng)為的“不動(dòng)點(diǎn)”,若,則稱(chēng)為的“穩(wěn)定點(diǎn)”,函數(shù)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為和,即,,那么,
(1)求函數(shù)的“穩(wěn)定點(diǎn)”;
(2)求證:;
(3)若,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)單調(diào)函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,如果單調(diào)函數(shù)使得函數(shù)的值域也是,則稱(chēng)函數(shù)是函數(shù)的一個(gè)“保值域函數(shù)”.已知定義域?yàn)?/span>的函數(shù),函數(shù)與互為反函數(shù),且是的一個(gè)“保值域函數(shù)”,是的一個(gè)“保值域函數(shù)”,則__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車(chē)行業(yè)是碳排放量比較大的行業(yè)之一,歐盟從2012年開(kāi)始就對(duì)二氧化碳排放量超過(guò)
的型汽車(chē)進(jìn)行懲罰,某檢測(cè)單位對(duì)甲、乙兩類(lèi)型品牌汽車(chē)各抽取5輛進(jìn)行二氧化碳排放量檢測(cè),記錄如下(單位:):
甲 | 80 | 110 | 120 | 140 | 150 |
乙 | 100 | 120 | 100 | 160 |
經(jīng)測(cè)算發(fā)現(xiàn),乙類(lèi)型品牌汽車(chē)二氧化碳排放量的平均值為.
(Ⅰ)從被檢測(cè)的5輛甲類(lèi)型品牌車(chē)中任取2輛,則至少有1輛二氧化碳排放量超過(guò)的概率是多少?
(Ⅱ)求表中,并比較甲、乙兩類(lèi)型品牌汽車(chē)二氧化碳排放量的穩(wěn)定性.
,其中,表示的平均數(shù),表示樣本數(shù)量,表示個(gè)體,表示方差)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且, .
求證:(1)直線DE平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù)滿足對(duì)于任意實(shí)數(shù),都有,且當(dāng)時(shí),,.
(1)判斷的奇偶性并證明;
(2)判斷的單調(diào)性,并求當(dāng)時(shí),的最大值及最小值;
(3)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:
甲公司 | 乙公司 | ||||||||
職位 | A | B | C | D | 職位 | A | B | C | D |
月薪/千元 | 5 | 6 | 7 | 8 | 月薪/千元 | 4 | 6 | 8 | 10 |
獲得相應(yīng)職位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 獲得相應(yīng)職位概率 | 0.4 | 0.3 | 0.2 | 0.1 |
(1)若兩人分別去應(yīng)聘甲、乙兩家公司的C職位,記這兩人被甲、乙兩家公司的C職位錄用的人數(shù)和為,求的分布列;
(2)根據(jù)甲、乙兩家公司的聘用信息,如果你是該求職者,你會(huì)選擇哪一家公司?說(shuō)明理由。
(3)若小王和小李分別被甲、乙兩家公司錄用,求小王月薪高于小李的概率。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com