分析 利用等比數(shù)列的通項(xiàng)公式可得q,an.再利用對(duì)數(shù)的運(yùn)算性質(zhì)、“裂項(xiàng)求和”方法即可得出.
解答 解:設(shè)等比數(shù)列{an}的公比為q,a1=3,a4=81,
∴81=3×q3,解得q=3.
∴an=3n.
數(shù)列{bn}滿足bn=(n+1)log3an=n(n+1),
∴$\frac{1}{_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
則{$\frac{1}{_{n}}$}的前n項(xiàng)和Sn=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
故答案為:$\frac{n}{n+1}$.
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法、對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[\frac{1}{3}ln2,+∞)$ | B. | $[0,\frac{1}{3}ln2]$ | C. | (-∞,0] | D. | $(-∞,\frac{1}{3}ln2]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com