7.已知數(shù)列{an}為等比數(shù)列,a1=3,a4=81,若數(shù)列{bn}滿足bn=(n+1)log3an,則{$\frac{1}{_{n}}$}的前n項(xiàng)和Sn=$\frac{n}{n+1}$.

分析 利用等比數(shù)列的通項(xiàng)公式可得q,an.再利用對(duì)數(shù)的運(yùn)算性質(zhì)、“裂項(xiàng)求和”方法即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,a1=3,a4=81,
∴81=3×q3,解得q=3.
∴an=3n
數(shù)列{bn}滿足bn=(n+1)log3an=n(n+1),
∴$\frac{1}{_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
則{$\frac{1}{_{n}}$}的前n項(xiàng)和Sn=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
故答案為:$\frac{n}{n+1}$.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法、對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.(文)對(duì)任意實(shí)數(shù)x,符號(hào)[x]表示x的整數(shù)部分,即[x]是不超過(guò)x的最大整數(shù),在實(shí)數(shù)軸R(箭頭向右)上[x]是在點(diǎn)x左側(cè)的第一個(gè)整數(shù)點(diǎn),當(dāng)x是整數(shù)時(shí)[x]就是x.這個(gè)函數(shù)[x]叫做“取整函數(shù)”,它在生產(chǎn)實(shí)踐中有廣泛的應(yīng)用.那么[log21]+[log22]+[log23]+[log24]+…+[log2512]=3595.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)$f(x)=\left\{\begin{array}{l}2{x^3}+3{x^2}+1(x≤0)\\{e^{ax}}(x>0)\end{array}\right.$在[-2,3]上的最大值為2,則實(shí)數(shù)a的取值范圍是( 。
A.$[\frac{1}{3}ln2,+∞)$B.$[0,\frac{1}{3}ln2]$C.(-∞,0]D.$(-∞,\frac{1}{3}ln2]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)已知集合A={x|y=$\sqrt{{x}^{2}-5x-14}$},B={x|m+1≤x≤2m+1}.若A∪B=A,求實(shí)數(shù)m的取值范圍;
(2)若函數(shù)y=f(x)的值域是[$\frac{1}{4}$,4],求函數(shù)y=f(x)-2$\sqrt{f(x)}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知f1(x)=sinx+cosx,記${f_2}(x)={f_1}'(x),{f_3}(x)={f_2}'(x),…,{f_n}(x)={f_{n-1}}'(x),(n∈{N^*},n≥2)$,則${f_1}(\frac{π}{2})+{f_2}(\frac{π}{2})+…+{f_{2015}}(\frac{π}{2})$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)$f(x)={log_2}(1+\frac{1}{x})$.
(1)求使f(x)>1的x的取值范圍;
(2)計(jì)算f(1)+f(2)+…+f(127)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,其公差為-1,若S1,S2,S4成等比數(shù)列,則a1=( 。
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知{an}為等差數(shù)列,a1+a3=2,則a2等于( 。
A.-1B.1C.3D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若函數(shù)f(x)=2|x-a|(a∈R)滿足f(1+x)=f(1-x),且f(x)在[m,+∞)上單調(diào)遞增,則實(shí)數(shù)m的最小值等于1.

查看答案和解析>>

同步練習(xí)冊(cè)答案