已知是實(shí)數(shù),函數(shù),和,分別是的導(dǎo)函數(shù),若在區(qū)間上恒成立,則稱(chēng)和在區(qū)間上單調(diào)性一致.
(Ⅰ)設(shè),若函數(shù)和在區(qū)間上單調(diào)性一致,求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè)且,若函數(shù)和在以為端點(diǎn)的開(kāi)區(qū)間上單調(diào)性一致,求的最大值.
(Ⅰ);(Ⅱ).
解析試題分析:(Ⅰ)由不等式恒成立,即可求出結(jié)果. (Ⅱ)在以為端點(diǎn)的開(kāi)區(qū)間上恒成立,對(duì)的大小分類(lèi)討論,以確定的取值范圍,從而去確定的最大值.
試題解析:由已知,,,;
(Ⅰ)由題設(shè)“單調(diào)性一致”定義知,在區(qū)間上恒成立,
即 在區(qū)間上恒成立,
因,所以,所以,在區(qū)間上恒成立,
即在區(qū)間上恒成立,而在上最大值
所以,,即;
(Ⅱ)由“單調(diào)性一致”定義知,在以為端點(diǎn)的開(kāi)區(qū)間上恒成立,
即在以為端點(diǎn)的開(kāi)區(qū)間上恒成立,
因,所以,由,得,,;
①若,則開(kāi)區(qū)間為,取,由知,和在區(qū)間上單調(diào)性不一致,不符合題設(shè);
②若,因均為非負(fù),故不在以為端點(diǎn)的開(kāi)區(qū)間內(nèi);所以,只有可能在區(qū)間上;
由在以為端點(diǎn)的區(qū)間上恒成立,知要么不小于中的大者,要么不大于中的小者;
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/82/b/llqla.png" style="vertical-align:middle;" />都不大于0,所以,,所以,由知,所以;
當(dāng)時(shí),由在區(qū)間上恒成立,即在區(qū)間上恒成立,知最大值為,而由解得;
此時(shí),,配方后知,取不到最大值;
當(dāng)時(shí),顯然,此時(shí),當(dāng),即時(shí),取得最大值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),其中為常數(shù)。
(Ⅰ)當(dāng)時(shí),判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)有極值點(diǎn),求的取值范圍及的極值點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),.
(1)記為的導(dǎo)函數(shù),若不等式在上有解,求實(shí)數(shù)的取值范圍;
(2)若,對(duì)任意的,不等式恒成立.求(,)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)試問(wèn)的值是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由;
(2)定義,其中,求;
(3)在(2)的條件下,令.若不等式對(duì)且恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,,在處的切線(xiàn)方程為
(Ⅰ)求的單調(diào)區(qū)間與極值;
(Ⅱ)求的解析式;
(III)當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若在上至少存在一點(diǎn),使得成立,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中為正實(shí)數(shù),是的一個(gè)極值點(diǎn).
(Ⅰ)求的值;
(Ⅱ)當(dāng)時(shí),求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
(Ⅰ)當(dāng)a=1時(shí),若曲線(xiàn)y=f(x)在點(diǎn)M (x0,f(x0))處的切線(xiàn)與曲線(xiàn)y=g(x)在點(diǎn)P (x0, g(x0))處的切線(xiàn)平行,求實(shí)數(shù)x0的值;
(II)若(0,e],都有f(x)≥g(x)+,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
己知函數(shù).
(I)求f(x)的極小值和極大值;
(II)當(dāng)曲線(xiàn)y = f(x)的切線(xiàn)的斜率為負(fù)數(shù)時(shí),求在x軸上截距的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com