已知函數(shù),其中為正實數(shù),的一個極值點.
(Ⅰ)求的值;
(Ⅱ)當(dāng)時,求函數(shù)上的最小值.

(Ⅰ);(Ⅱ)詳見解析.

解析試題分析:(Ⅰ)由為函數(shù)的一個極值點,得到便可求出的值,但在求得答案后注意處附近左、右兩側(cè)導(dǎo)數(shù)符號相反,即成為極值點的必要性;(Ⅱ)對于含參函數(shù)的最值問題,一般結(jié)合導(dǎo)數(shù)考察函數(shù)在相應(yīng)區(qū)間的單調(diào)性,利用端點值以及函數(shù)的極值確定函數(shù)的最小值.
試題解析:
(Ⅰ)因為是函數(shù)的一個極值點,
所以,因此,,解得,
經(jīng)檢驗,當(dāng)時,的一個極值點,故所求的值為.
4分
(Ⅱ)由(Ⅰ)可知,

,得
的變化情況如下:








+
0
-
0
+





練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1) 當(dāng)時,求的單調(diào)區(qū)間;
(2) 若當(dāng)時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分)已知函數(shù)
(1)當(dāng)時,求最小值;
(2)若存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)求證:).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是實數(shù),函數(shù),,分別是的導(dǎo)函數(shù),若在區(qū)間上恒成立,則稱在區(qū)間上單調(diào)性一致.
(Ⅰ)設(shè),若函數(shù)在區(qū)間上單調(diào)性一致,求實數(shù)的取值范圍;
(Ⅱ)設(shè),若函數(shù)在以為端點的開區(qū)間上單調(diào)性一致,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知函數(shù)
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),(其中),且函數(shù)的圖象在點處的切線與函數(shù)的圖象在點處的切線重合.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若,滿足,求實數(shù)的取值范圍;
(Ⅲ)若,試探究的大小,并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)().
(Ⅰ)當(dāng)時,求函數(shù)的極值;   
(Ⅱ)若對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)若x=1時取得極值,求實數(shù)的值;
(2)當(dāng)時,求上的最小值;
(3)若對任意,直線都不是曲線的切線,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)在點處取得極小值-4,使其導(dǎo)數(shù)的取值范圍為,求:
(1)的解析式;
(2),求的最大值;

查看答案和解析>>

同步練習(xí)冊答案