分析 (Ⅰ)運用直線的斜率公式,可得直線l的方程,求得A,B的坐標(biāo),可得橢圓的方程,運用離心率公式可得;
(Ⅱ)直線OP的斜率為k,依題意有k>0且k≠1,直線OP的方程為y=kx,直線l的方程為$y-{y_0}=-\frac{1}{k}({x-{x_0}})$,求得A,B的坐標(biāo),橢圓方程,代入直線y=kx,求得M,N的坐標(biāo),可得|OM|,運用基本不等式,即可得到結(jié)論.
解答 解:(Ⅰ)kOP=$\frac{1}{\sqrt{3}}$,可得k1=-$\sqrt{3}$,直線l的方程為y-1=-$\sqrt{3}$(x-$\sqrt{3}$),
令x=0,得y=4,令y=0,得x=$\frac{4\sqrt{3}}{3}$,可得A($\frac{4\sqrt{3}}{3}$,0)B(0,4).
即有橢圓C的方程為$\frac{3{x}^{2}}{16}$+$\frac{{y}^{2}}{16}$=1,
離心率e=$\frac{c}{a}$=$\sqrt{1-(\frac{a})^{2}}$=$\frac{\sqrt{6}}{3}$;
(Ⅱ)證明:直線OP的斜率為k,依題意有k>0且k≠1,
直線OP的方程為y=kx,直線l的方程為$y-{y_0}=-\frac{1}{k}({x-{x_0}})$,
令x=0,得$y=\frac{x_0}{k}+{y_0}$,令y=0,得x=ky0+x0,
可得$A({k{y_0}+{x_0},0}),B({0,\frac{x_0}{k}+{y_0}})$,
橢圓C的方程$\frac{x^2}{{{{({k{y_0}+{x_0}})}^2}}}+\frac{y^2}{{{{({\frac{x_0}{k}+{y_0}})}^2}}}=1$,
聯(lián)立$\left\{{\begin{array}{l}{y=kx}\\{\frac{x^2}{{{{({k{y_0}+{x_0}})}^2}}}+\frac{y^2}{{{{({\frac{x_0}{k}+{y_0}})}^2}}}=1}\end{array}}\right.$,
解出$x=±\frac{1}{{\sqrt{\frac{1}{{{{({k{y_0}+{x_0}})}^2}}}+\frac{k^2}{{{{({\frac{x_0}{k}+{y_0}})}^2}}}=1}}}=±\frac{{{x_0}+k{y_0}}}{{\sqrt{1+{k^4}}}}$,
可得$M({\frac{{{x_0}+k{y_0}}}{{\sqrt{1+{k^4}}}},k\frac{{{x_0}+k{y_0}}}{{\sqrt{1+{k^4}}}}})$,$N({-\frac{{{x_0}+k{y_0}}}{{\sqrt{1+{k^4}}}},-k\frac{{{x_0}+k{y_0}}}{{\sqrt{1+{k^4}}}}})$,
即有${|{OM}|^2}=\frac{{{{({{x_0}+k{y_0}})}^2}}}{{1+{k^4}}}+{k^2}\frac{{{{({{x_0}+k{y_0}})}^2}}}{{1+{k^4}}}=\frac{{1+{k^2}}}{{1+{k^4}}}{({{x_0}+k{y_0}})^2}$
=$\frac{{1+{{({\frac{y_0}{x_0}})}^2}}}{{1+{{({\frac{y_0}{x_0}})}^4}}}{({{x_0}+\frac{y_0}{x_0}{y_0}})^2}=\frac{{\frac{x_0^2+y_0^2}{x_0^2}}}{{\frac{x_0^4+y_0^4}{x_0^4}}}{({\frac{x_0^2+y_0^2}{x_0}})^2}=\frac{{4{{({x_0^2+y_0^2})}^2}}}{x_0^4+y_0^4}$
=$4({\frac{x_0^4+2x_0^2y_0^2+y_0^4}{x_0^4+y_0^4}})=4({1+\frac{2x_0^2y_0^2}{x_0^4+y_0^4}})=4({1+\frac{2}{{{{({\frac{x_0}{y_0}})}^2}+{{({\frac{y_0}{x_0}})}^2}}}})$
=4(1+$\frac{2}{{k}^{2}+\frac{1}{{k}^{2}}}$)<4(1+$\frac{2}{2}$)=8,
可得|OM|<2$\sqrt{2}$,
即有|MN|=2|OM|<4$\sqrt{2}$.
點評 本題考查橢圓的方程及運用,以及離心率公式,考查直線方程和橢圓方程聯(lián)立,解方程求交點,考查化簡整理的運算能力,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | 0 | D. | -$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 由金、銀、銅、鐵可導(dǎo)電,猜想:金屬都可以導(dǎo)電 | |
B. | 猜想數(shù)列5,7,9,11,…的通項公式為an=2n+3 | |
C. | 由正三角形的性質(zhì)得出正四面體的性質(zhì) | |
D. | 半徑為r的圓的面積S=π•r2,則單位圓的面積S=π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2sin($\frac{2}{3}$x-$\frac{π}{9}$) | B. | y=2sin($\frac{2}{3}$x-$\frac{2π}{3}$) | C. | y=2sin($\frac{2}{3}$x-$\frac{5π}{9}$) | D. | y=2sin(6x-$\frac{7π}{3}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com