6.在直角坐標(biāo)系xOy中,圓x2+y2=4上一點P(x0,y0)(x0y0>0)處的切線l分別交x軸、y軸于點A,B,以A,B為頂點且以O(shè)為中心的橢圓記作C,直線OP交C于M,N兩點.
(Ⅰ)若P點坐標(biāo)為($\sqrt{3}$,1),求橢圓C的離心率;
(Ⅱ)證明|MN|<4$\sqrt{2}$.

分析 (Ⅰ)運用直線的斜率公式,可得直線l的方程,求得A,B的坐標(biāo),可得橢圓的方程,運用離心率公式可得;
(Ⅱ)直線OP的斜率為k,依題意有k>0且k≠1,直線OP的方程為y=kx,直線l的方程為$y-{y_0}=-\frac{1}{k}({x-{x_0}})$,求得A,B的坐標(biāo),橢圓方程,代入直線y=kx,求得M,N的坐標(biāo),可得|OM|,運用基本不等式,即可得到結(jié)論.

解答 解:(Ⅰ)kOP=$\frac{1}{\sqrt{3}}$,可得k1=-$\sqrt{3}$,直線l的方程為y-1=-$\sqrt{3}$(x-$\sqrt{3}$),
令x=0,得y=4,令y=0,得x=$\frac{4\sqrt{3}}{3}$,可得A($\frac{4\sqrt{3}}{3}$,0)B(0,4).
即有橢圓C的方程為$\frac{3{x}^{2}}{16}$+$\frac{{y}^{2}}{16}$=1,
離心率e=$\frac{c}{a}$=$\sqrt{1-(\frac{a})^{2}}$=$\frac{\sqrt{6}}{3}$;
(Ⅱ)證明:直線OP的斜率為k,依題意有k>0且k≠1,
直線OP的方程為y=kx,直線l的方程為$y-{y_0}=-\frac{1}{k}({x-{x_0}})$,
令x=0,得$y=\frac{x_0}{k}+{y_0}$,令y=0,得x=ky0+x0,
可得$A({k{y_0}+{x_0},0}),B({0,\frac{x_0}{k}+{y_0}})$,
橢圓C的方程$\frac{x^2}{{{{({k{y_0}+{x_0}})}^2}}}+\frac{y^2}{{{{({\frac{x_0}{k}+{y_0}})}^2}}}=1$,
聯(lián)立$\left\{{\begin{array}{l}{y=kx}\\{\frac{x^2}{{{{({k{y_0}+{x_0}})}^2}}}+\frac{y^2}{{{{({\frac{x_0}{k}+{y_0}})}^2}}}=1}\end{array}}\right.$,
解出$x=±\frac{1}{{\sqrt{\frac{1}{{{{({k{y_0}+{x_0}})}^2}}}+\frac{k^2}{{{{({\frac{x_0}{k}+{y_0}})}^2}}}=1}}}=±\frac{{{x_0}+k{y_0}}}{{\sqrt{1+{k^4}}}}$,
可得$M({\frac{{{x_0}+k{y_0}}}{{\sqrt{1+{k^4}}}},k\frac{{{x_0}+k{y_0}}}{{\sqrt{1+{k^4}}}}})$,$N({-\frac{{{x_0}+k{y_0}}}{{\sqrt{1+{k^4}}}},-k\frac{{{x_0}+k{y_0}}}{{\sqrt{1+{k^4}}}}})$,
即有${|{OM}|^2}=\frac{{{{({{x_0}+k{y_0}})}^2}}}{{1+{k^4}}}+{k^2}\frac{{{{({{x_0}+k{y_0}})}^2}}}{{1+{k^4}}}=\frac{{1+{k^2}}}{{1+{k^4}}}{({{x_0}+k{y_0}})^2}$
=$\frac{{1+{{({\frac{y_0}{x_0}})}^2}}}{{1+{{({\frac{y_0}{x_0}})}^4}}}{({{x_0}+\frac{y_0}{x_0}{y_0}})^2}=\frac{{\frac{x_0^2+y_0^2}{x_0^2}}}{{\frac{x_0^4+y_0^4}{x_0^4}}}{({\frac{x_0^2+y_0^2}{x_0}})^2}=\frac{{4{{({x_0^2+y_0^2})}^2}}}{x_0^4+y_0^4}$
=$4({\frac{x_0^4+2x_0^2y_0^2+y_0^4}{x_0^4+y_0^4}})=4({1+\frac{2x_0^2y_0^2}{x_0^4+y_0^4}})=4({1+\frac{2}{{{{({\frac{x_0}{y_0}})}^2}+{{({\frac{y_0}{x_0}})}^2}}}})$
=4(1+$\frac{2}{{k}^{2}+\frac{1}{{k}^{2}}}$)<4(1+$\frac{2}{2}$)=8,
可得|OM|<2$\sqrt{2}$,
即有|MN|=2|OM|<4$\sqrt{2}$.

點評 本題考查橢圓的方程及運用,以及離心率公式,考查直線方程和橢圓方程聯(lián)立,解方程求交點,考查化簡整理的運算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知F1,F(xiàn)2分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左,右焦點,A,B分別為橢圓的上,下頂點.過橢圓的右焦點F2的直線在y軸右側(cè)交橢圓于C,D兩點.△F1CD的周長為8,且直線AC,BC的斜率之積為$-\frac{1}{4}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)四邊形ABCD的面積為S,求S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,過焦點且垂直于長軸的弦長為$\sqrt{2}$.
(1)已知點A,B是橢圓上兩點,點C為橢圓的上頂點,△ABC的重心恰好使橢圓的右焦點F,求A,B所在直線的斜率;
(2)過橢圓的右焦點F作直線l1、l2,直線l1與橢圓分別交于點M、N,直線l2與橢圓分別交于點P、Q,且|$\overrightarrow{MP}$|2+|$\overrightarrow{NQ}$|2=|$\overrightarrow{NP}$|2+|$\overrightarrow{MQ}$|2,求四邊形MPNQ的面積S最小時直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,F(xiàn)1,F(xiàn)2為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,D,E是橢圓的兩個頂點,|F1F2|=2$\sqrt{3}$,|DE|=$\sqrt{5}$,若點M(x0,y0)在橢圓C上,則點N($\frac{{x}_{0}}{a}$,$\frac{{y}_{0}}$)稱為點M的一個“橢點”.直線l與橢圓交于A,B兩點,A,B兩點的“橢點”分別為P,Q,已知以PQ為直徑的圓經(jīng)過坐標(biāo)原點O.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)試探討△AOB的面積S是否為定值?若為定值,求出該定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.我國發(fā)射的天宮一號飛行器需要建造隔熱層.已知天宮一號建造的隔熱層必須使用20年,每厘米厚的隔熱層建造成本是6萬元,天宮一號每年的能源消耗費用C(萬元)與隔熱層厚度x(厘米)滿足關(guān)系式:C(x)=$\frac{k}{3x+8}$(0≤x≤10),若無隔熱層(即x=0),則每年能源消耗費用為5萬元.設(shè)f(x)為隔熱層建造費用與使用20年的能源消耗費用之和.
(1)求C(x)和f(x)的表達(dá)式;
(2)當(dāng)隔熱層修建多少厘米厚時,總費用f(x)最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將函數(shù)f(x)=2sin(2x-$\frac{π}{4}$)的圖象向左平移$\frac{π}{4}$個單位,得到函數(shù)g(x)的圖象,則g(0)=( 。
A.$\sqrt{2}$B.2C.0D.-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-\frac{1}{x},x≥2}\\{x,x<2}\end{array}\right.$,若使不等式f(x)<$\frac{8}{3}$成立,則x的取值范圍為{x|x<3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下面幾種推理中是演繹推理的是(  )
A.由金、銀、銅、鐵可導(dǎo)電,猜想:金屬都可以導(dǎo)電
B.猜想數(shù)列5,7,9,11,…的通項公式為an=2n+3
C.由正三角形的性質(zhì)得出正四面體的性質(zhì)
D.半徑為r的圓的面積S=π•r2,則單位圓的面積S=π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)y=2sin($\frac{2}{9}$x-$\frac{20π}{27}$),把它的圖象向左平移$\frac{π}{3}$個單位,再使其圖象上每點的縱坐標(biāo)不變,橫坐標(biāo)縮小為原來的$\frac{1}{3}$,得到的圖象對應(yīng)的解析式為( 。
A.y=2sin($\frac{2}{3}$x-$\frac{π}{9}$)B.y=2sin($\frac{2}{3}$x-$\frac{2π}{3}$)C.y=2sin($\frac{2}{3}$x-$\frac{5π}{9}$)D.y=2sin(6x-$\frac{7π}{3}$)

查看答案和解析>>

同步練習(xí)冊答案