16.已知F1,F(xiàn)2分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左,右焦點,A,B分別為橢圓的上,下頂點.過橢圓的右焦點F2的直線在y軸右側(cè)交橢圓于C,D兩點.△F1CD的周長為8,且直線AC,BC的斜率之積為$-\frac{1}{4}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)設四邊形ABCD的面積為S,求S的取值范圍.

分析 (Ⅰ)設C(x1,y1),D(x2,y2),求出A(0,b),B(0,-b),4a=8,a=2,由直線AC,BC的斜率之積為$-\frac{1}{4}$.求出b,即可求解橢圓方程.
(Ⅱ)設直線$CD:x=my+\sqrt{3}$,代入$\frac{x^2}{4}+{y^2}=1$,利用韋達定理,以及弦長公式,求解三角形的面積,得到表達式,然后求解范圍.

解答 解:(Ⅰ)設C(x1,y1),D(x2,y2),由題意得A(0,b),B(0,-b),4a=8,a=2(2分)
由${k_{AC}}•{k_{BC}}=\frac{{{y_1}-b}}{x_1}×\frac{{{y_1}+b}}{x_1}=\frac{{y_1^2-{b^2}}}{x_1^2}=-\frac{b^2}{a^2}=-\frac{1}{4}$,
得${b^2}=\frac{1}{4}{a^2}=1$(5分),
∴橢圓的方程為$\frac{x^2}{4}+{y^2}=1$(6分)
(Ⅱ)由(Ⅰ)知,${F_2}(\sqrt{3},0)$,故設直線$CD:x=my+\sqrt{3}$,

代入$\frac{x^2}{4}+{y^2}=1$得$({m^2}+4){y^2}+2\sqrt{3}my-1=0$,
則${y_1}+{y_2}=\frac{{-2\sqrt{3}m}}{{{m^2}+4}},{y_1}{y_2}=\frac{-1}{{{m^2}+4}}$(7分),
$|{{y_1}-{y_2}}|=\frac{{4\sqrt{{m^2}+1}}}{{{m^2}+4}}$,由x1>0,x2>0,得0≤m2<3,
${x_1}+{x_2}=m({y_1}+{y_2})+2\sqrt{3}=\frac{{8\sqrt{3}}}{{{m^2}+4}}$(10分)
∴面積S=S△AOD+S△BOC+S△OCD=$\frac{1}{2}$×$\frac{{8\sqrt{3}}}{{{m^2}+4}}+\frac{1}{2}×\sqrt{3}×$$\frac{{4\sqrt{{m^2}+1}}}{{{m^2}+4}}$=$\frac{{2\sqrt{3}(\sqrt{{m^2}+1}+2)}}{{{m^2}+4}}$(12分)
令$t=\sqrt{{m^2}+1}+2,t∈[3,4)$,
則$S=\frac{{2\sqrt{3}t}}{{{{(t-2)}^2}+3}}=\frac{{2\sqrt{3}}}{{t+\frac{7}{t}-4}}$在t∈[3,4)上遞減
所以$S∈(\frac{{8\sqrt{3}}}{7},\frac{{3\sqrt{3}}}{2}]$.(15分)

點評 本題考查橢圓方程的求法,直線與橢圓的位置關系的綜合應用,三角形的面積的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.若f(x)=sinx+cosx,則f′($\frac{π}{2}$)=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.(x2+a)(x-1)9的展開式中x3的系數(shù)為-159,則實數(shù)a=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)y=x2-2x+1,x∈[0,3]的值域是[0,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若f(x)=$\sqrt{x+2}$,則f(x)的定義域是{x|x≥-2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若圓x2+(y-1)2=r2與曲線(x-1)y=1沒有公共點,則半徑r的取值范圍(0,$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,右焦點到直線$x=\frac{a^2}{c}$的距離為3,圓N的方程為(x-c)2+y2=a2+c2(c為半焦距),
(1)求橢圓M的方程和圓N的方程.
(2 ) 若直線l;y=kx+m是橢圓M和圓N的公切線,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,直線l:y=kx+$\sqrt{3}$過C的一個焦點F,O為坐標原點.
(1)求橢圓C的方程;
(2)若A(x1,y1),B(x2,y2)是橢圓上的兩點,$\overrightarrow{m}$=($\frac{{x}_{1}}$,$\frac{{y}_{1}}{a}$),$\overrightarrow{n}$=($\frac{{x}_{2}}$,$\frac{{y}_{2}}{a}$)且$\overrightarrow{m}$⊥$\overrightarrow{n}$,試問:△AOB的面積是否為定值?如果是,求出這個值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在直角坐標系xOy中,圓x2+y2=4上一點P(x0,y0)(x0y0>0)處的切線l分別交x軸、y軸于點A,B,以A,B為頂點且以O為中心的橢圓記作C,直線OP交C于M,N兩點.
(Ⅰ)若P點坐標為($\sqrt{3}$,1),求橢圓C的離心率;
(Ⅱ)證明|MN|<4$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案