【題目】有甲、乙兩個游戲項目,要參與游戲,均需每次先付費元(不返還),游戲甲有種結(jié)果:可能獲得元,可能獲得元,可能獲得元,這三種情況的概率分別為,,;游戲乙有種結(jié)果:可能獲得元,可能獲得元,這兩種情況的概率均為.
(1)某人花元參與游戲甲兩次,用表示該人參加游戲甲的收益(收益=參與游戲獲得錢數(shù)-付費錢數(shù)),求的概率分布及期望;
(2)用表示某人參加次游戲乙的收益,為任意正整數(shù),求證:的期望為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.已知點的直角坐標為,曲線的極坐標方程為,直線過點且與曲線相交于,兩點.
(1)求曲線的直角坐標方程;
(2)若,求直線的直角坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩個同學分別拋擲一枚質(zhì)地均勻的骰子.
(1)求他們拋擲的骰子向上的點數(shù)之和是4的倍數(shù)的概率;
(2)求甲拋擲的骰子向上的點數(shù)不大于乙拋擲的骰子向上的點數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)問:能否為偶函數(shù)?請說明理由;
(2)總存在一個區(qū)間,當時,對任意的實數(shù),方程無解,當時,存在實數(shù),方程有解,求區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱(側(cè)棱垂直于底面)中,,,,.
(1)證明:平面;
(2)若是的中點,在線段上是否存在一點使平面?若存在,請確定點的位置;若不存在,也請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在一次射擊預選賽中,甲、乙兩人各射擊次,兩人成績的條形統(tǒng)計圖如圖所示,則下列四個選項中判斷不正確的是( )
A. 甲的成績的平均數(shù)小于乙的成績的平均數(shù)
B. 甲的成績的中位數(shù)小于乙的成績的中位數(shù)
C. 甲的成績的方差大于乙的成績的方差
D. 甲的成績的極差小于乙的成績的極差
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.年某企業(yè)計劃引進新能源汽車生產(chǎn)設備,通過市場分析,全年需投入固定成本萬元,每生產(chǎn)(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完.
(1)求出2018年的利潤(萬元)關(guān)于年產(chǎn)量(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)
(2)2018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某射擊運動員每次擊中目標的概率是,在某次訓練中,他只有4發(fā)子彈,并向某一目標射擊.
(1)若4發(fā)子彈全打光,求他擊中目標次數(shù)的數(shù)學期望;
(2)若他擊中目標或子彈打光就停止射擊,求消耗的子彈數(shù)的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校高二年級一個學習興趣小組進行社會實踐活動,決定對某“著名品牌”系列進行市場銷售量調(diào)研,通過對該品牌的系列一個階段的調(diào)研得知,發(fā)現(xiàn)系列每日的銷售量(單位:千克)與銷售價格(元/千克)近似滿足關(guān)系式,其中,為常數(shù).已知銷售價格為6元/千克時,每日可售出系列15千克.
(1)求函數(shù)的解析式;
(2)若系列的成本為4元/千克,試確定銷售價格的值,使該商場每日銷售系列所獲得的利潤最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com