【題目】在平面直角坐標(biāo)系xOy中,以原點O為極點,以x軸非負(fù)半軸為極軸建立極坐標(biāo)系.已知直線l的方程為4ρcosθ﹣ρsinθ﹣25=0,曲線W: (t是參數(shù)).
(1)求直線l的直角坐標(biāo)方程與曲線W的普通方程;
(2)若點P在直線l上,Q在曲線W上,求|PQ|的最小值.

【答案】
(1)解:因為4ρcosθ﹣ρsinθ﹣25=0,由直角坐標(biāo)與極坐標(biāo)的轉(zhuǎn)化公式可得4x﹣y﹣25=0,

所以直線l的直角坐標(biāo)方程為4x﹣y﹣25=0,

由W: 消去t得

曲線W的普通方程為


(2)解:依題意設(shè)點Q(2t,t2﹣1),則點Q到直線l的距離為 ,

當(dāng)且僅當(dāng)t=4時去等號,所以|PQ|得最小值為


【解析】(1)根據(jù)直角坐標(biāo)與極坐標(biāo)的對于關(guān)系得出直線l的直角坐標(biāo)方程,使用代入消元法小區(qū)參數(shù)方程中的t得出曲線W的普通方程;(2)設(shè)Q點坐標(biāo)(2t,t2﹣1),代入點到直線的距離公式,利用二次函數(shù)的性質(zhì)得出|PQ|的最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若上恒成立,求a的取值范圍;

(2)求[-2,2]上的最大值M(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《城市規(guī)劃管理意見》里面提出“新建住宅要推廣街區(qū)制,原則上不再建設(shè)封閉住宅小區(qū),已建成的封閉小區(qū)和單位大院要逐步打開”,這個消息在網(wǎng)上一石激起千層浪,各種說法不一而足.某網(wǎng)站為了解居民對“開放小區(qū)”認(rèn)同與否,從歲的人群中隨機抽取了人進行問卷調(diào)查,并且做出了各個年齡段的頻率分布直方圖(部分)如圖所示,同時對人對這“開放小區(qū)”認(rèn)同情況進行統(tǒng)計得到下表:

(Ⅰ)完成所給的頻率分布直方圖,并求的值;

(Ⅱ)如果從兩個年齡段中的“認(rèn)同”人群中,按分層抽樣的方法抽取6人參與座談會,然后從這6人中隨機抽取2人作進一步調(diào)查,求這2人的年齡都在內(nèi)的概率 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義區(qū)間[x1 , x2]長度為x2﹣x1(x2>x1),已知函數(shù)f(x)= (a∈R,a≠0)的定義域與值域都是[m,n],則區(qū)間[m,n]取最大長度時a的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中點. (Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點N是直線CD上的動點,MN與面SAB所成的角為θ,求sinθ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某高中數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中抽取50名同學(xué)(男3020),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進行解答.選題情況如下表:(單位:人)

幾何題

代數(shù)題

合計

男同學(xué)

22

8

30

女同學(xué)

8

12

20

合計

30

20

50

(1)能否據(jù)此判斷有的把握認(rèn)為視覺和空間能力與性別有關(guān)?

(2)以上列聯(lián)表中女生選做幾何題的頻率作為概率,從該校1500名女生中隨機選6名女生,記6名女生選做幾何題的人數(shù)為,求的數(shù)學(xué)期望和方差.

附表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,則實數(shù) b的取值范圍是(
A.(﹣∞,
B.(﹣∞,
C.(﹣∞,3)
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘著名的畢達哥拉斯學(xué)派把這樣的數(shù)稱為三角形數(shù),而把

這樣的數(shù)稱為正方形數(shù).如圖,可以發(fā)現(xiàn)任何一個大于正方形數(shù)都可以看作兩個相鄰

三角形數(shù)之和,下列四個等式:;②;③;

中符合這一規(guī)律的等式是_____________.(填寫所有正確結(jié)論的編號)

……

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面說法中錯誤的是( )

A. 經(jīng)過定點的直線都可以用方程表示

B. 經(jīng)過定點的直線都可以用方程表示

C. 經(jīng)過定點的直線都可以用方程表示

D. 不經(jīng)過原點的直線都可以用方程表示

E. 經(jīng)過任意兩個不同的點的直線都可以用方程 表示

查看答案和解析>>

同步練習(xí)冊答案