【題目】A,B,C是圓O上不同的三點(diǎn),線段CO與線段AB交于點(diǎn)D,若 =λ +μ (λ∈R,μ∈R),則λ+μ的取值范圍是( )
A.(1,+∞)
B.(0,1)
C.(1, ]
D.(﹣1,0)
【答案】A
【解析】解:∵A,B,C是圓0上不同的三點(diǎn),線段C0與線段AB交于點(diǎn)D;
∴如圖所示,不妨取∠AOB=120°,∠AOC=∠BOC=60°,則四邊形AOBC為菱形;
∴ = + ;
又 =λ +μ ;
∴λ=μ=1,λ+μ=2,∴可排除B,C,D選項(xiàng).
故選:A.
【考點(diǎn)精析】本題主要考查了平面向量的基本定理及其意義的相關(guān)知識(shí)點(diǎn),需要掌握如果、是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù)、,使才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線C:x2=4y的焦點(diǎn)為F,斜率為k的直線l經(jīng)過點(diǎn)F,若拋物線C上存在四個(gè)點(diǎn)到直線l的距離為2,則k的取值范圍是( )
A.(﹣∞,﹣ )∪( ,+∞)
B.(﹣ ,﹣1)∪(1, )
C.(﹣ , )
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的右焦點(diǎn)F(1,0),過F的直線l與橢圓C交于A,B兩點(diǎn),當(dāng)l垂直于x軸時(shí),|AB|=3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在點(diǎn)T,使得 為定值?若存在,求出點(diǎn)T坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足(,且),且,設(shè),,數(shù)列滿足.
(1)求證:數(shù)列是等比數(shù)列并求出數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和;
(3)對(duì)于任意,,恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)解不等式;
(2)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若函數(shù),其中為奇函數(shù), 為偶函數(shù),若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為提高市民的戒煙意識(shí),通過一個(gè)戒煙組織面向全市煙民征招志愿戒煙者,從符合條件的志愿者中隨機(jī)抽取100名,將年齡分成,,,,五組,得到頻率分布直方圖如圖所示.
(1)求圖中的值,并估計(jì)這100名志愿者的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若年齡在的志愿者中有2名女性煙民,現(xiàn)從年齡在的志愿者中隨機(jī)抽取2人,求至少有一名女性煙民的概率;
(3)該戒煙組織向志愿者推薦了,兩種戒煙方案,這100名志愿者自愿選取戒煙方案,并將戒煙效果進(jìn)行統(tǒng)計(jì)如下:
有效 | 無效 | 合計(jì) | |
方案 | 48 | 60 | |
方案 | 36 | ||
合計(jì) |
完成上面的列聯(lián)表,并判斷是否有的把握認(rèn)為戒煙方案是否有效與方案選取有關(guān).
參考公式:,.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對(duì)我國(guó)申辦2034年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:
不支持 | 支持 | 合計(jì) | |
男性市民 | |||
女性市民 | |||
合計(jì) |
(1)根據(jù)已知數(shù)據(jù)把表格數(shù)據(jù)填寫完整;
(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:
(i)能否有的把握認(rèn)為支持申辦足球世界杯與性別有關(guān);
(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退體老人中隨機(jī)抽取人,求至多有位老師的概率.
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)過點(diǎn)M(m,2),其焦點(diǎn)為F,且|MF|=2.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)E為y軸上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)E作不經(jīng)過原點(diǎn)的兩條直線分別與拋物線C和圓F:(x﹣1)2+y2=1相切,切點(diǎn)分別為A,B,求證:直線AB過定點(diǎn)F(1,0).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com