在直三棱柱中,,. 已知G與E分別為 和的中點(diǎn),D與F分別為線段上的動(dòng)點(diǎn)(不包括端點(diǎn)). 若,則線段的長度的取值范圍為
A.B.C.D.
A
建立直角坐標(biāo)系,以A為坐標(biāo)原點(diǎn),AB為軸,AC為軸,AA為z軸,則),,,)。所以,。因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823135024420330.gif" style="vertical-align:middle;" />,所以,由此推出 。又,,從而有 。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,四棱錐中,底面是矩形,平面,分別是的中點(diǎn),
(1)求證:平面;
(2)求證:平面⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖:已知正方體ABCD—A1B1C1D1,過BD1的平面分別交棱AA1和棱CC1于E、F兩點(diǎn)。(1)求證:A1E=CF; (2)若E、F分別是棱AA1和棱CC1的中點(diǎn),求證:平面EBFD1⊥平面BB1D1。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知四棱錐,底面為矩形,側(cè)棱,其中,為側(cè)棱上的兩個(gè)三等分點(diǎn),如圖所示.

(Ⅰ)求證:;
(Ⅱ)求異面直線所成角的余弦值;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖:在四棱錐中,底面ABCD是菱形,,平面ABCD,點(diǎn)M,N分別為BC,PA的中點(diǎn),且
(I)證明:平面AMN;
(II)求三棱錐N的體積;
(III)在線段PD上是否存在一點(diǎn)E,使得平面ACE;若存在,求出PE的長,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分,第(1)小題6分,第(2)小題8分)
四棱錐P-ABCD中,PD⊥平面ABCD,PA與平面ABCD所成的角為60,在四邊形ABCD中,∠ADC=∠DAB=90,AB=4,CD=1,AD=2.

(1)求四棱錐P-ABCD的體積;
(2)求異面直線PA與BC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖三棱柱中,側(cè)棱與底面成角,⊥底面, ⊥側(cè)面,且,,則頂點(diǎn)到棱的距離是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分,(Ⅰ)小問6分,(Ⅱ)小問6分.)
如圖(20)圖,為平面,AB=5,A,B在棱l上的射影分別為A′,B′,AA′=3,BB′=2.若二面角的大小為,求:
(Ⅰ)點(diǎn)B到平面的距離;
(Ⅱ)異面直線lAB所成的角(用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是三個(gè)不重合的平面,是不重合的直線,給出下列命題:
①若;②若;③若
;④若內(nèi)的射影互相垂直,則,其中錯(cuò)誤命題有      (    )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案