2.已知底面為正方形的四棱錐O-ABCD,各側(cè)棱長都為$2\sqrt{3}$,底面面積為16,以O(shè)為球心,以2為半徑作一個球,則這個球與四棱錐O-ABCD相交部分的體積是( 。
A.$\frac{2π}{9}$B.$\frac{8π}{9}$C.$\frac{16π}{9}$D.$\frac{4π}{3}$

分析 分析可知,四棱錐O-ABCD實質(zhì)是一個正方體的$\frac{1}{6}$,且球在正方體的內(nèi)部

解答 解:∵連接正方體的對角線根據(jù)交點得出正方體可以分割成6個相同的四棱錐,
∴四棱錐O-ABCD的底面ABCD是邊長為4的正方形,各側(cè)棱長均為2$\sqrt{3}$,
以O(shè)為中心,將6個這樣的四棱錐放在一起,會得到一個正方體;
而以O(shè)為球心,1為半徑的球正好在正方體的內(nèi)部;
則球與該四棱錐重疊部分的體積為球體積的$\frac{1}{6}$;
因此以O(shè)為球心,1為半徑的球與該四棱錐重疊部分的體積是V=$\frac{1}{6}$×$\frac{4}{3}$×π×23=$\frac{16π}{9}$,
故選:C.

點評 本題考查了學(xué)生的空間想象力,把不規(guī)則圖形補成一個規(guī)則圖形,整體理解幾何體的結(jié)構(gòu)特征.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x2+2ax+2.
(1)當(dāng)a=-1時,求函數(shù)f(x)在區(qū)間[-3,3]上的最大值和最小值;
(2)設(shè)函數(shù)g(x)=x-1,當(dāng)x∈[-1,3]時,恒有f(x)>g(x),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在三棱錐P-ABC中,PA⊥平面ABC,△ABC為正三角形,D,E分別為BC,CA的中點.
(1)在BC上求做一點F,使AD∥平面PEF,并證明你的結(jié)論;
(2)設(shè)AB=PA=2,對于(1)中的點F,求三棱錐B-PEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(Ⅰ)證明:AE⊥平面PCD;
(Ⅱ)求PB和平面PAC所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知△ABC中,AB+$\sqrt{2}$AC=6,BC=4,D為BC的中點,則當(dāng)AD最小時,△ABC的面積為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知三棱錐O-ABC底面ABC的頂點在半徑為4的球O表面上,且AB=6,BC=2$\sqrt{3}$,AC=4$\sqrt{3}$,則三棱錐O-ABC的體積為( 。
A.4$\sqrt{3}$B.12$\sqrt{3}$C.18$\sqrt{3}$D.36$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(用空間向量坐標(biāo)表示解答)如圖,在直三棱柱ABC-A1B1C1中,AC=BC=CC1=2,AC⊥BC,D為AB的中點.
(1)求證:AC1∥面B1CD
(2)求直線AA1與面B1CD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=-x3+a2x(a∈R),若曲線y=f(x)在點P(1,f(1))處的切線的傾斜角為$\frac{π}{4}$,則該切線方程為x-y+2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=x3-3x+c有兩個不同零點,且有一個零點恰為f(x)的極大值點,則c的值為( 。
A.0B.2C.-2D.-2或2

查看答案和解析>>

同步練習(xí)冊答案