11.已知函數(shù)f(x)=-x3+a2x(a∈R),若曲線y=f(x)在點(diǎn)P(1,f(1))處的切線的傾斜角為$\frac{π}{4}$,則該切線方程為x-y+2=0.

分析 求出函數(shù)的導(dǎo)數(shù),可得切線的斜率和切點(diǎn),運(yùn)用點(diǎn)斜式方程可得所求切線的方程.

解答 解:函數(shù)f(x)=-x3+a2x的導(dǎo)數(shù)為f′(x)=-3x2+a2,
曲線y=f(x)在點(diǎn)P(1,f(1))處的切線的傾斜角為$\frac{π}{4}$,
可得切線的斜率為1,即有-3+a2=1,
解得a=±2.
可得f(1)=-1+4=3,即P(1,3),
即有切線的方程為y-3=x-1,即為x-y+2=0.
故答案為:x-y+2=0.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運(yùn)用直線的點(diǎn)斜式方程是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖(a)已知線段BD=4,A,C關(guān)于BD對(duì)稱,以BD為直徑作圓,經(jīng)過A,C兩點(diǎn),BA=2,延長DA,CB交于點(diǎn)P,將△PAB沿AB折起,使點(diǎn)P至點(diǎn)Q位置,得到圖(b)所示空間圖形,其中Q在平面ABCD內(nèi)的射影恰為線段AD中點(diǎn)N,QD中點(diǎn)為M.
(1)求證:QD⊥平面ABM;
(2)求四棱錐M-ABCN體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知底面為正方形的四棱錐O-ABCD,各側(cè)棱長都為$2\sqrt{3}$,底面面積為16,以O(shè)為球心,以2為半徑作一個(gè)球,則這個(gè)球與四棱錐O-ABCD相交部分的體積是( 。
A.$\frac{2π}{9}$B.$\frac{8π}{9}$C.$\frac{16π}{9}$D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在直三棱錐ABC-A1B1C1中,AB⊥CB1,AB=BC=2,AA1=4,則該三棱柱外接球的表面積為24π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.執(zhí)行如圖所示的程序框圖,若輸入的A,S分別為0,1,則輸出的S=( 。
A.4B.16C.27D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)若$y={log_{\frac{1}{3}}}(m{x^2}+2x+m)$的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈[-1,1]時(shí),求函數(shù)$y={[{(\frac{1}{3})^x}]^2}-2a•{(\frac{1}{3})^x}+3$的最小值h(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象過點(diǎn)(1,0).
(1)記函數(shù)f(x)在[0,2]上的最大值為M,若M≤1,求a的最大值;
(2)若對(duì)任意的x1∈[0,2],存在x2∈[0,2],使得f(x1)+f(x2)>$\frac{3}{2}$a,求$\frac{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.2013年,首都北京經(jīng)歷了59年來霧霾天氣最多的一個(gè)月.經(jīng)氣象局統(tǒng)計(jì),北京市從1月1日至1月30日這30天里有26天出現(xiàn)霧霾天氣.《環(huán)境空氣質(zhì)量指數(shù)(AQI)技術(shù)規(guī)定(試行)》依據(jù)AQI指數(shù)高低將空氣污染級(jí)別分為:優(yōu),指數(shù)為0-50;良,指數(shù)為51-100;輕微污染,指數(shù)為101-150;輕度污染,指數(shù)為151-200;中度污染,指數(shù)為201-250;中度重污染,指數(shù)為251-300;重度污染,指數(shù)大于300.下面表1是某氣象觀測點(diǎn)記錄的北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計(jì)結(jié)果,表2是該觀測點(diǎn)記錄的4天里,AQI指數(shù)M與當(dāng)天的空氣水平可見度y(千米)的情況,
表1:北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計(jì)
AQI指數(shù)[0,200](200,400](400,600](600,800](800,1000]
頻數(shù)361263
表2:AQI指數(shù)M與當(dāng)天的空氣水平可見度y(千米)情況
AQI指數(shù)M900700300100
空氣可見度y(千米)0.53.56.59.5
(1)小王在記錄表1數(shù)據(jù)的觀測點(diǎn)附近開了一家小飯館,飯館生意的好壞受空氣質(zhì)量影響很大.假設(shè)每天空氣質(zhì)量的情況不受前一天影響.經(jīng)小王統(tǒng)計(jì):AQI指數(shù)不高于200時(shí),飯館平均每天凈利潤約700元,AQI指數(shù)在200至400時(shí),飯館平均每天凈利潤約400元,AQI指數(shù)大于400時(shí),飯館每天要凈虧損200元,求小王某一天能夠獲利的概率;
(2)設(shè)變量x=$\frac{M}{100}$,根據(jù)表2的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(用最小二乘法求線性回歸方程系數(shù)公式b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)a>b>1,c<0給出下列三個(gè)結(jié)論:
①$\frac{c}{a}$>$\frac{c}$;②ac<bc;③logb(a-c)>loga(b-c);④aln(-c)>bln(-c).
其中所有正確命題的序號(hào)是①②③.

查看答案和解析>>

同步練習(xí)冊答案