分析 (1)連結(jié)AC、BD,交于點O,連結(jié)OE,則OE∥SC,由此能證明SC∥平面EBD.
(2)以A為原點,AB為x軸,AD為y軸,AS為z軸,建立空間直角坐標系,利用向量法能求出二面角S-CD-B的大。
解答 證明:(1)連結(jié)AC、BD,交于點O,連結(jié)OE,
∵四棱錐S-ABCD中SA⊥底面ABCD,ABCD是正方形,點E是SA的中點,
∴OE∥SC,
∵OE?平面EBD,SC?平面EBD,
∴SC∥平面EBD.
解:(2)以A為原點,AB為x軸,AD為y軸,AS為z軸,建立空間直角坐標系,
設SA=AB=1,則S(0,0,1),C(1,1,0),D(0,1,0),
$\overrightarrow{SC}=(1,1,-1)$,$\overrightarrow{SD}$=(0,1,-1),
設平面SCD的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{SC}=x+y-z=0}\\{\overrightarrow{n}•\overrightarrow{SD}=y-z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,1),
平面CBD的法向量$\overrightarrow{m}$=(0,0,1),
設二面角S-CD-B的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$.
∴$θ=\frac{π}{4}$.
∴二面角S-CD-B的大小為$\frac{π}{4}$.
點評 本題考查線面平行的證明,考查二面角的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
X | 0 | 1 |
p | 0.3 | 0.7 |
A. | a=10,b=3 | B. | a=3,b=10 | C. | a=100,b=-60 | D. | a=60,b=-100 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 歸納推理,類比推理 | B. | 演繹推理,類比推理 | ||
C. | 類比推理,演繹推理 | D. | 歸納推理,演繹推理 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com