【題目】AB是☉O的直徑,點C是☉O上的動點(點C不與A,B重合),過動點C的直線VC垂直于☉O所在的平面,D,E分別是VA,VC的中點,則下列結論中正確的是________(填寫正確結論的序號).

(1)直線DE∥平面ABC.

(2)直線DE⊥平面VBC.

(3)DE⊥VB.

(4)DE⊥AB.

【答案】(1)(2)(3)

【解析】因為AB是☉O的直徑,點C是☉O上的動點(點C不與A,B重合),所以AC⊥BC,

因為VC垂直于☉O所在的平面,所以AC⊥VC,又BC∩VC=C,所以AC⊥平面VBC.

因為D,E分別是VA,VC的中點,所以DE∥AC,又DE平面ABC,AC平面ABC,所以DE∥平面ABC,DE⊥平面VBC,DE⊥VB,DE與AB所成的角為∠BAC是銳角,故DE⊥AB不成立.由以上分析可知(1)(2)(3)正確,故填(1)(2)(3).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖在邊長為2a的正方形ABCD,EF分別為AB,BC的中點,沿圖中虛線將3個三角形折起使點A,B,C重合,重合后記為點P.

(1)折起后形成的幾何體是什么幾何體

(2)這個幾何體共有幾個面,每個面的三角形有何特點

(3)每個面的三角形面積為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各對直線不互相垂直的是 (  )

A. l1的傾斜角為120°,l2過點P(1,0),Q(4, )

B. l1的斜率為-,l2過點P(1,1),Q

C. l1的傾斜角為30°,l2過點P(3, )Q(4,2)

D. l1過點M(1,0),N(4,-5),l2過點P(-6,0),Q(-1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線a,b和平面M,N,且a⊥M,則下列說法正確的是 (  )

A. b∥Mb⊥a B. b⊥ab∥M

C. N⊥Ma∥N D. aNM∩N≠

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,BCDC,AEDC,MN分別是AD,BE的中點,將三角形ADE沿AE折起,則下列說法正確的是________(填序號).

①不論D折至何位置(不在平面ABC內),都有MN∥平面DEC;②不論D折至何位置,都有MNAE;③不論D折至何位置(不在平面ABC內),都有MNAB;④在折起過程中,一定存在某個位置,使ECAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ax2﹣2lnx,x∈(0,e],其中e是自然對數(shù)的底.
(1)若f(x)在x=1處取得極值,求a的值;
(2)求f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x2﹣alnx(a∈R)
(1)若函數(shù)f(x)在x=2處的切線方程為y=x+b,求a,b的值;
(2)討論方程f(x)=0解的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:如果函數(shù)y=f(x)在定義域內給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)= ,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個均值點.例如y=|x|是[﹣2,2]上的平均值函數(shù),0就是它的均值點.若函數(shù)f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函數(shù)”,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國有個名句“運籌帷幄之中,決勝千里之外.”其中的“籌”原意是指《孫子算經》中記載的算籌,古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,如表
表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如6613用算籌表示就是: ,則9117用算籌可表示為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案