A. | x=$\frac{5π}{6}$ | B. | x=$\frac{7π}{12}$ | C. | x=$\frac{π}{3}$ | D. | x=$\frac{π}{6}$ |
分析 利用${∫}_{0}^{\frac{2π}{3}}$f(x)dx=0求出φ值,然后找出使三角函數(shù)f(x)取得最值的x即可.
解答 解:函數(shù)f(x)=sin(x-φ)且|φ|<$\frac{π}{2}$,
所以${∫}_{0}^{\frac{2π}{3}}$f(x)dx=${∫}_{0}^{\frac{2π}{3}}$sin(x-φ)dx=-cos(x-φ)${|}_{0}^{\frac{2π}{3}}$=-cos($\frac{2π}{3}$-φ)+cosφ=0,
所以tanφ=$\sqrt{3}$,解得φ=$\frac{π}{3}$+kπ,k∈Z;
又|φ|≤$\frac{π}{2}$,∴φ=$\frac{π}{3}$;
所以f(x)=sin(x-$\frac{π}{3}$);
所以函數(shù)f(x)的圖象的對稱軸是x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z;
即x=kπ+$\frac{5π}{6}$,k∈Z;
所以f(x)其中一條對稱軸為x=$\frac{5π}{6}$.
故選:A.
點(diǎn)評 本題考查了定積分的計算以及三角函數(shù)圖象對稱軸的求法問題,只要使三角函數(shù)取得最值的自變量的值,就是三角函數(shù)的一條對稱軸.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1000π | B. | 2000π | C. | 3000π | D. | 400π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1-i | B. | -1+i | C. | 1-i | D. | 1+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | cos(-α)=-cosα | B. | sin(-α)=-sinα | C. | sin(90°-α)=sinα | D. | cos(90°-α)=cosα |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在等差數(shù)列{an}中,若ap+aq=ar+aδ,則p+q=r+δ | |
B. | 已知數(shù)列{an}的前n項(xiàng)和為Sn,若{an}是等比數(shù)列,則Sk,S2k-Sk,S3k-S2k也是等比數(shù)列 | |
C. | 在數(shù)列{an}中,若ap+aq=2ar,則ap,ar,aq成等差數(shù)列 | |
D. | 在數(shù)列{an}中,若ap•aq=a${\;}_{r}^{2}$,則ap,ar,aq成等比數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=|x| | B. | f(x)=$\frac{1}{x}$ | C. | f(x)=lnx | D. | f(x)=ex |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com