【題目】已知函數(shù)其中為常數(shù)且處取得極值.

1當(dāng)時(shí),求的單調(diào)區(qū)間;

2上的最大值為1,求的值.

【答案】(1)見解析;(2)

【解析】

由函數(shù)的解析式,可求出函數(shù)導(dǎo)函數(shù)的解析式,進(jìn)而根據(jù)的一個(gè)極值點(diǎn),可構(gòu)造關(guān)于a,b的方程,根據(jù)求出b值;可得函數(shù)導(dǎo)函數(shù)的解析式,分析導(dǎo)函數(shù)值大于0和小于0時(shí),x的范圍,可得函數(shù)的單調(diào)區(qū)間;對(duì)函數(shù)求導(dǎo),寫出函數(shù)的導(dǎo)函數(shù)等于0x的值,列表表示出在各個(gè)區(qū)間上的導(dǎo)函數(shù)和函數(shù)的情況,求出極值,把極值同端點(diǎn)處的值進(jìn)行比較得到最大值,最后利用條件建立關(guān)于a的方程求得結(jié)果.

因?yàn)?/span>所以,

因?yàn)楹瘮?shù)處取得極值,

,

當(dāng)時(shí),,,

x的變化情況如下表:

x

1

0

0

極大值

極小值

所以的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為

因?yàn)?/span>

,,

因?yàn)?/span>處取得極值,所以,

當(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減

所以在區(qū)間上的最大值為,

,解得

當(dāng),

當(dāng)時(shí),上單調(diào)遞增,上單調(diào)遞減,上單調(diào)遞增

所以最大值1可能在處取得

所以,解得

當(dāng)時(shí),在區(qū)間上單調(diào)遞增,上單調(diào)遞減,上單調(diào)遞增

所以最大值1可能在處取得

所以,

解得,與矛盾.

當(dāng)時(shí),在區(qū)間上單調(diào)遞增,在單調(diào)遞減,

所以最大值1可能在處取得,而,矛盾。

綜上所述,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,AB=AC.試求出應(yīng)滿足的一個(gè)充分必要條件,使得在的內(nèi)部存在一個(gè)點(diǎn),滿足(1);(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,直線的參數(shù)方程為為參數(shù)),圓的極坐標(biāo)方程為.

(1)求直線的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某些商家為消費(fèi)者提供免費(fèi)塑料袋,使購(gòu)物消費(fèi)更加方便快捷,但是我們更應(yīng)關(guān)注它對(duì)環(huán)境的潛在危害.為了解某市所有家庭每年丟棄塑料袋個(gè)數(shù)的情況,統(tǒng)計(jì)人員采用了科學(xué)的方法,隨機(jī)抽取了200戶,對(duì)他們某日丟棄塑料袋的個(gè)數(shù)進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:

1)求當(dāng)日這200戶家庭平均每戶丟棄塑料袋的個(gè)數(shù);

2)假設(shè)某市現(xiàn)有家庭100萬(wàn)戶,據(jù)此估計(jì)全市所有家庭每年(以365天計(jì)算)丟棄塑料袋的總數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)人獨(dú)立地破譯一個(gè)密碼,他們能譯出密碼的概率分別為.

1)求2個(gè)人都譯出密碼的概率;

2)求2個(gè)人都譯不出密碼的概率;

3)求至多1個(gè)人都譯出密碼的概率;

4)求至少1個(gè)人都譯出密碼的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計(jì)了該地區(qū)500名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過(guò)匯總整理得到如圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數(shù)的患者,稱為“短潛伏者”,潛伏期高于平均數(shù)的患者,稱為“長(zhǎng)潛伏者”.

1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并計(jì)算出這500名患者中“長(zhǎng)潛伏者”的人數(shù);

2)為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否高于平均數(shù)為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述500名患者中抽取300人,得到如下表格.

i)請(qǐng)將表格補(bǔ)充完整;

短潛伏者

長(zhǎng)潛伏者

合計(jì)

60歲及以上

90

60歲以下

140

合計(jì)

300

ii)研究發(fā)現(xiàn),某藥物對(duì)新冠病毒有一定的抑制作用,現(xiàn)需在樣本中60歲以下的140名患者中按分層抽樣方法抽取7人做I期臨床試驗(yàn),再?gòu)倪x取的7人中隨機(jī)抽取兩人做Ⅱ期臨床試驗(yàn),求兩人中恰有1人為“長(zhǎng)潛伏者”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC的內(nèi)角AB,C所對(duì)邊分別為a、b、c,且2acosC=2b-c

1)求角A的大;

2)若AB=3,AC邊上的中線SD的長(zhǎng)為,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,四邊形是菱形,四邊形是正方形,,,,點(diǎn)的中點(diǎn).

(1)求證:平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將所有的正奇數(shù)按以下規(guī)律分組,第一組:1;第二組:3,5,7;第三組:9,11,1315,17; 表示n是第i組的第j個(gè)數(shù),例如,則

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案